Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Hybrid Multi-Objective-Optimization Algorithm for Energy Efficient Priority-based QoS Routing in IoT networks

Version 1 : Received: 3 April 2021 / Approved: 5 April 2021 / Online: 5 April 2021 (11:02:56 CEST)

How to cite: MOZHI, T. Hybrid Multi-Objective-Optimization Algorithm for Energy Efficient Priority-based QoS Routing in IoT networks. Preprints 2021, 2021040096 (doi: 10.20944/preprints202104.0096.v1). MOZHI, T. Hybrid Multi-Objective-Optimization Algorithm for Energy Efficient Priority-based QoS Routing in IoT networks. Preprints 2021, 2021040096 (doi: 10.20944/preprints202104.0096.v1).

Abstract

The growing requirement for real-time Internet of Things (IoT) applications has ended with Quality of Service (QoS) communication protocols. where heterogeneous IoT data collection and communication processing contains specific requirements in terms of energy, reliability, latency, and priority. Due to energy constraints, a proper estimation model for monitoring and control is accomplished by the objective of sensing and end-to-end communication respectively. moreover, the connectivity requires a QoS routing protocol to finding the route selection for sensor networks. Hence, data routing and prioritization and Satisfying the QoS requirements are the significant challenges in such networks. So for the Multi-objective Optimization for QoS Routing method is used for differentiating the traffics while data communication and gives the requirements to be caring about the network resource. In this paper, the Energy-Efficient Priority-based Multi-Objective QoS routing (PMQoSR) mechanism ensures the energy and Qos in IoT networks. the proposed system regulates the routing performance based on the QoS parameters, using optimization technique for three hybrid algorithms, named as WLFA- Whale Lion Fireworks optimization algorithm with Fitness Function Routing(FFR) mechanisms .the WLFA to prevent congestion and minimizes the localization error using and select the shortest routing path through the network period uses Priority label and time delay patterns when sending data to the destination. We evaluate its performance and existing competing schemes in terms of Energy-Efficient. The results demonstrate that PMQoSR holds out considering network traffic, packets forwarding, error rate, energy, and distance between the nodes and also considers priority-aware routing to improve the traffic load, throughput, end-to-end delay, and packet delivery ratio when compared with the existing systems.

Subject Areas

Internet of Things; multi-objective optimization; QoS Routing; Energy consumption; Fitness Function Routing

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.