Preprint
Article

Comparison of In vivo [18F]Fluoro-desoxyglucose and [18F]Fluoro-thymidine Positron Emission Tomography for Disease Monitoring in a Mouse Model of Higher-Risk Myelodysplastic Syndrome

Submitted:

02 April 2021

Posted:

05 April 2021

You are already at the latest version

Abstract
Higher-risk myelodysplastic syndrome (HR-MDS) has a poor prognosis in the absence of efficient therapy. The evaluation of new therapies in animal models of HR-MDS is hampered by the absence of accurate in vivo biomarkers of the disease. In this study we compared [18F]Fluoro-desoxyglucose Positron Emission Tomography (FDG-PET) and [18F]Fluoro-thymidine (FLT)-PET imaging for disease follow-up in a triple transgenic MMTVtTA/TetoBCL-2/MRP8NRASD12 mouse model of HR-MDS. Normal control FVB/N mice (G1,n=9) and HR-MDS mice (G2,n=12) underwent both FDG- and FLT-PET procedures at 2-day intervals, on a dedicated small animal device. Blood cell counting, BCL-2 and Mac-1hi/Gr-1lo expression measurements in blood were performed before each PET procedure. Visually, PET images of G2 mice demonstrated homogeneous FDG uptake in the whole skeleton similar to that observed in G1 mice, and abnormal FLT hot spots in bone marrow not observed in G1 mice. The intensity of FLT hot spots in bone marrow was higher in 3-months old G2 mice than in 2-months old G2 mice, concordant with a higher percentage of cells expressing Mac-1hi/Gr-1lo and lower platelets counts. We conclude that FLT-PET/CT imaging is a more valuable surrogate non-invasive quantitative marker of HR-MDS bone marrow involvement than FDG-PET/CT in our mouse model of HR-MDS.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

233

Views

263

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated