Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Indirect Nuclear Magnetic Resonance (NMR) Spectroscopic Determination of Acrylamide in Coffee Using Partial Least Squares (PLS) Regression

Version 1 : Received: 16 March 2021 / Approved: 17 March 2021 / Online: 17 March 2021 (14:48:40 CET)

A peer-reviewed article of this Preprint also exists.

Journal reference: Beverages 2021, 7, 31
DOI: 10.3390/beverages7020031

Abstract

Acrylamide is probably carcinogenic to humans (International Agency for Research on Cancer, group 2A) with major occurrence in heated, mainly carbohydrate-rich foods. For roasted coffee, a European Union benchmark level of 400 µg/kg acrylamide is of importance. Regularly, the acrylamide contents are controlled using liquid chromatography combined with tandem mass spectrometry (LC-MS/MS). This reference method is reliable and precise but laborious because of the necessary sample clean-up procedure and instrument requirements. This research investigates the possibility of predicting the acrylamide content from proton nuclear magnetic resonance (NMR) spectra that are already recorded for other purposes of coffee control. In the NMR spectrum acrylamide is not directly quantifiable, so that the aim was to establish a correlation between the reference value and the corresponding NMR spectrum by means of a partial least squares (PLS) regression. Therefore, 40 commercially available coffee samples with already available LC-MS/MS data and NMR spectra were used as calibration data. To test the accuracy and robustness of the model and its limitations, 50 coffee samples with extreme roasting degrees and blends were additionally prepared as test set. The PLS model shows an applicability for the varieties C. arabica and C. canephora, which were medium to very dark roasted using drum or infrared roasters. The root mean square error of prediction (RMSEP) is 79 µg/kg acrylamide (n=32). The PLS model is judged as suitable to predict the acrylamide values of commercially available coffee samples. On the other hand, very light roasts containing more than 1000 µg/kg acrylamide are currently not suitable for PLS prediction.

Keywords

acrylamide; coffee; partial least square regression; NMR; LC-MS/MS

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.