Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Data Science in Healthcare- Current Challenges and Opportunities

Version 1 : Received: 16 March 2021 / Approved: 16 March 2021 / Online: 16 March 2021 (13:03:15 CET)

How to cite: Khurana, P.; Varshney, R. Data Science in Healthcare- Current Challenges and Opportunities. Preprints 2021, 2021030425 (doi: 10.20944/preprints202103.0425.v1). Khurana, P.; Varshney, R. Data Science in Healthcare- Current Challenges and Opportunities. Preprints 2021, 2021030425 (doi: 10.20944/preprints202103.0425.v1).

Abstract

The rise in the volume, variety and complexity of data in healthcare has made it as a fertile-bed for Artificial intelligence (AI) and Machine Learning (ML). Several types of AI are already being employed by healthcare providers and life sciences companies. The review summarises a classical machine learning cycle, different machine learning algorithms; different data analytical approaches and successful implementation in haematology. Although there are many instances where AI has been found to be great tool that can augment the clinician’s ability to provide better health outcomes, implementation factors need to be put in place to ascertain large-scale acceptance and popularity.

Subject Areas

Artificial Intelligence; Machine Learning; Healthcare; Haematology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.