Preprint
Review

This version is not peer-reviewed.

Data Science in Healthcare- Current Challenges and Opportunities

Submitted:

16 March 2021

Posted:

16 March 2021

You are already at the latest version

Abstract
The rise in the volume, variety and complexity of data in healthcare has made it as a fertile-bed for Artificial intelligence (AI) and Machine Learning (ML). Several types of AI are already being employed by healthcare providers and life sciences companies. The review summarises a classical machine learning cycle, different machine learning algorithms; different data analytical approaches and successful implementation in haematology. Although there are many instances where AI has been found to be great tool that can augment the clinician’s ability to provide better health outcomes, implementation factors need to be put in place to ascertain large-scale acceptance and popularity.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated