Preprint
Article

Adaptive Machine Learning for Robust Diagnostics and Control of Time-Varying Particle Accelerator Components and Beams

This version is not peer-reviewed.

Submitted:

10 March 2021

Posted:

11 March 2021

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Machine learning (ML) is growing in popularity for various particle accelerator applications including anomaly detection such as faulty beam position monitor or RF fault identification, for non-invasive diagnostics, and for creating surrogate models. ML methods such as neural networks (NN) are useful because they can learn input-output relationships in large complex systems based on large data sets. Once they are trained, methods such as NNs give instant predictions of complex phenomenon, which makes their use as surrogate models especially appealing for speeding up large parameter space searches which otherwise require computationally expensive simulations. However, quickly time varying systems are challenging for ML-based approaches because the actual system dynamics quickly drifts away from the description provided by any fixed data set, degrading the predictive power of any ML method, and limits their applicability for real time feedback control of quickly time-varying accelerator components and beams. In contrast to ML methods, adaptive model-independent feedback algorithms are by design robust to un-modeled changes and disturbances in dynamic systems, but are usually local in nature and susceptible to local extrema. In this work, we propose that the combination of adaptive feedback and machine learning, adaptive machine learning (AML), is a way to combine the global feature learning power of ML methods such as deep neural networks with the robustness of model-independent control. We present an overview of several ML and adaptive control methods, their strengths and limitations, and an overview of AML approaches. A simple code for the adaptive control algorithm used here can be downloaded from: https://github.com/alexscheinker/ES_adaptive_optimization
Keywords: 
;  ;  
Subject: 
Physical Sciences  -   Acoustics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

221

Views

308

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated