Preprint
Brief Report

This version is not peer-reviewed.

Characterization of Inkjet-printed Digital Microfluidics Devices

A peer-reviewed article of this preprint also exists.

Submitted:

07 March 2021

Posted:

09 March 2021

You are already at the latest version

Abstract
Digital microfluidics (DMF) devices enable precise manipulation of small liquid volumes in point-of-care testing. Printed circuit board (PCB) substrate is commonly utilized to build DMF devices. However, inkjet printing can be used to fabricate DMF circuits, providing a less expensive alternative to PCB-based DMF designs while enabling more rapid design iteration cycles. We demonstrate the fabrication process of the inkjet-printed DMF circuit. We compare Kapton and polymethyl methacrylate (PMMA) as dielectric coatings by measuring the minimal droplet actuation voltage for a range of actuation frequencies. The minimum actuation voltage of 5.6 V was required for droplet movement with the PMMA layer thickness of 0.2 μm and a hydrophobic layer of 0.17 μm. Significant issues with PMMA dielectric breakdown were observed at actuation voltages above 10 V. In comparison, devices that utilized Kapton were found to be more robust even at the actuation voltage up to 100 V.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated