Version 1
: Received: 28 February 2021 / Approved: 2 March 2021 / Online: 2 March 2021 (12:38:47 CET)
Version 2
: Received: 19 March 2021 / Approved: 23 March 2021 / Online: 23 March 2021 (09:04:41 CET)
Seal, S.V.; Turner, J.D. The ‘Jekyll and Hyde’ of Gluconeogenesis: Early Life Adversity, Later Life Stress, and Metabolic Disturbances. Int. J. Mol. Sci.2021, 22, 3344.
Seal, S.V.; Turner, J.D. The ‘Jekyll and Hyde’ of Gluconeogenesis: Early Life Adversity, Later Life Stress, and Metabolic Disturbances. Int. J. Mol. Sci. 2021, 22, 3344.
Seal, S.V.; Turner, J.D. The ‘Jekyll and Hyde’ of Gluconeogenesis: Early Life Adversity, Later Life Stress, and Metabolic Disturbances. Int. J. Mol. Sci.2021, 22, 3344.
Seal, S.V.; Turner, J.D. The ‘Jekyll and Hyde’ of Gluconeogenesis: Early Life Adversity, Later Life Stress, and Metabolic Disturbances. Int. J. Mol. Sci. 2021, 22, 3344.
Abstract
The physiological response to a psychological stressor broadly impacts energy metabolism. In-versely, changes in energy availability affect the physiological response to the stressor in terms of hypothalamus, pituitary adrenal axis (HPA) and sympathetic nervous system activation. Glu-cocorticoids, the endpoint of the HPA axis, are critical checkpoints in endocrine control of ener-gy homeostasis and have been linked to metabolic diseases including obesity, insulin resistance and type 2 diabetes. Glucocorticoids, through the glucocorticoid receptor, activate transcription of genes associated with glucose and lipid regulatory pathways and thereby control both physi-ological and pathophysiological systemic energy homeostasis. Here, we summarize the current knowledge of glucocorticoid functions in energy metabolism and systemic metabolic dysfunc-tion, particularly focusing on glucose and lipid metabolism. There are elements in the external environment that induce lifelong changes in the HPA axis stress response and glucocorticoid levels, the most prominent are early-life adversity, or exposure to traumatic stress. We hypothe-sise that when the HPA axis is so disturbed after early-life adversity, it will fundamentally alter hepatic gluconeogenesis, inducing hyperglycaemia, and hence crystalise the significant lifelong risk of developing either the metabolic syndrome, or type 2 diabetes. This gives a “Jekyll and Hyde” role to gluconeogenesis, providing the necessary energy in situations of acute stress, but driving towards pathophysiological consequences when the HPA axis has been altered.
Keywords
glucose; glycogen; gluconeogenesis; early life adversity; acute stress; chronic stress; psychosocial stress; hypothalamus-pituitary-adrenal axis; ageing; immuno-senescence; inflamm-ageing; Developmental origins of health and disease
Subject
Biology and Life Sciences, Biochemistry and Molecular Biology
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Received:
23 March 2021
Commenter:
Jonathan Turner
Commenter's Conflict of Interests:
Author
Comment:
This is the revised version of the manuscript that has been submitted after peer review. There are no changes in authorship, affiliation, or the hypotheses underlying our manuscript.
Commenter: Jonathan Turner
Commenter's Conflict of Interests: Author