Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Influence of Traditional and Solar Reflective Coatings on the Heat Transfer of Building Roofs in Mexico

Version 1 : Received: 28 February 2021 / Approved: 2 March 2021 / Online: 2 March 2021 (10:11:48 CET)

A peer-reviewed article of this Preprint also exists.

Hernández-Pérez, I. Influence of Traditional and Solar Reflective Coatings on the Heat Transfer of Building Roofs in Mexico. Appl. Sci. 2021, 11, 3263. Hernández-Pérez, I. Influence of Traditional and Solar Reflective Coatings on the Heat Transfer of Building Roofs in Mexico. Appl. Sci. 2021, 11, 3263.

Journal reference: Appl. Sci. 2021, 11, 3263
DOI: 10.3390/app11073263

Abstract

Building roofs are sources of unwanted heat for buildings situated in zones with a warm climate. Thus, reflective coatings have emerged as an alternative to reject a significant fraction of solar energy received by roofs. In this research, the thermal behavior of concrete slab-type roofs with traditional and solar reflective coatings was simulated using a computational tool. Weather data from four cities in Mexico with a warm climate were used as boundary conditions. This tool is an in-house code based on the Finite Volume Method developed by the author to perform building components simulations. The code was validated with experimental data from previous work. A series of comparative simulations were developed, taking a gray roof as a control case. The results showed that for the roof without thermal insulation (single roof), the solar reflective coatings reduced the exterior surface between 11 and 16∘C. Consequently, the single roofs’ daily heat gain was reduced by a factor ranging between 41 and 54%. On the other hand, for the insulated roof, the reflective coatings reduced the exterior surface temperature between 17 and 21∘C. At the same time, the daily heat gain of composite roofs was reduced between 37 and 56%.

Keywords

Solar reflective coatings; Heat transfer; Heat gains; Building roofs

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.