Preprint
Article

Algorithmic Information Distortions in Node-Aligned and Node-Unaligned Multidimensional Networks

This version is not peer-reviewed.

Submitted:

27 February 2021

Posted:

02 March 2021

Read the latest preprint version here

A peer-reviewed article of this preprint also exists.

Abstract
In this article, we investigate limitations of importing methods based on algorithmic information theory from monoplex networks into multidimensional networks (such as multilayer networks) that have a large number of extra dimensions (i.e., aspects). In the worst-case scenario, it has been previously shown that node-aligned multidimensional networks with non-uniform multidimensional spaces can display exponentially larger algorithmic information (or lossless compressibility) distortions with respect to their isomorphic monoplex networks, so that these distortions grow at least linearly with the number of extra dimensions. We demonstrate that node-unaligned multidimensional networks, either with uniform or non-uniform multidimensional spaces, can also display exponentially larger algorithmic information distortions with respect to their isomorphic monoplex networks. However, unlike the previous node-aligned non-uniform case, these distortions grow at least exponentially with the number of extra dimensions. On the other hand, for node-aligned multidimensional networks with uniform multidimensional spaces, we demonstrate that any distortion can only grow up to a logarithmic order of the number of extra dimensions. Thus, these results establish that isomorphisms between finite multidimensional networks and finite monoplex networks do not preserve algorithmic information in general and highlight that the algorithmic information of the multidimensional space itself needs to be taken into account in multidimensional network complexity analysis.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

313

Views

408

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated