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Abstract: In this article, we investigate limitations of importing methods based on algorithmic
information theory from monoplex networks into multidimensional networks (such as multilayer
networks) that have a large number of extra dimensions (i.e., aspects). In the worst-case scenario,
it has been previously shown that node-aligned multidimensional networks with non-uniform
multidimensional spaces can display exponentially larger algorithmic information (or lossless com-
pressibility) distortions with respect to their isomorphic monoplex networks, so that these distortions
grow at least linearly with the number of extra dimensions. We demonstrate that node-unaligned
multidimensional networks, either with uniform or non-uniform multidimensional spaces, can also
display exponentially larger algorithmic information distortions with respect to their isomorphic
monoplex networks. However, unlike the previous node-aligned non-uniform case, these distortions
grow at least exponentially with the number of extra dimensions. On the other hand, for node-
aligned multidimensional networks with uniform multidimensional spaces, we demonstrate that any
distortion can only grow up to a logarithmic order of the number of extra dimensions. Thus, these
results establish that isomorphisms between finite multidimensional networks and finite monoplex
networks do not preserve algorithmic information in general and highlight that the algorithmic
information of the multidimensional space itself needs to be taken into account in multidimensional

network complexity analysis.

Keywords: multidimensional networks; network complexity; lossless compression; information dis-
tortion; graph isomorphism; multiaspect graphs; multilayer networks; information content analysis;
algorithmic complexity

1. Introduction

For multidimensional spaces that are sufficiently large and non-uniform, previous
work has shown that there are distortions in the general case when comparing the irre-
ducible information content (or lossless compressibility) of a node-aligned multidimensional
network with the irreducible information content of its isomorphic monoplex network
[1]. Therefore, this basically implies that currently existing methods that are based on
algorithmic information theory (AIT) applied to monoplex networks (or graphs) cannot be

*This paper is an extended version of a previous conference paper [1], whose results correspond to the node-aligned non-uniform case presented in

Section 3.
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straightforwardly imported into the multidimensional case without a proper evaluation of
the algorithmic information distortions that might be present.

AIT has been playing an important role in the investigation of network complexity [2—
4]. For example, it presented contributions to the challenge of causality discovery in
network modeling [5], network summarization [6,7], automorphism group size [8], network
topological properties [8,9], the principle of maximum entropy and network topology
reprogrammability [10], and the reducibility problem of multiplex networks [11]. As the
study of multidimensional networks, such as multilayer networks and dynamic multilayer
networks, become one of the central topics in network science, further exploration of
algorithmic information distortions also become relevant. In this sense, this article extends
the work in [1] and presents a theoretical analysis of algorithmic information distortions in
node-unaligned multidimensional networks that may have either uniform or non-uniform
multidimensional spaces. Thus, our mathematical results explore the possible combinations
of node alignment and uniformity that can generate algorithmic information distortions
and establish worst-case error margins for these distortions in multidimensional network
complexity analyses. In addition, it shows the importance of multidimensional network
encodings into which the necessary information for determining the multidimensional
space itself is also embedded.

By combining both the previous results from [1] and the new ones from Section 5 in
this article, we demonstrate in our final Theorem 18 that node-unaligned multidimensional
networks (with either uniform or non-uniform multidimensional spaces) can also display
worst-case algorithmic information distortions with respect to their respective isomorphic
monoplex networks. However, unlike the node-aligned non-uniform case studied in
[1] (in which the worst-case distortions were shown to grow at least linearly with the
number of extra node dimensions), we demonstrate that these worst-case distortions in
the node-unaligned case can grow at least exponentially with the number of extra node
dimensions. In addition, we demonstrate that both the node-unaligned cases and the one
studied in [1] contrast with the algorithmic information distortions displayed by node-
aligned multidimensional networks with uniform multidimensional spaces. In this latter
case, any algorithmic information distortion can only grow up to a logarithmic order of
the number of extra node dimensions. Therefore, the node-aligned uniform case is the
one in which the algorithmic information content of any multidimensional network and
the algorithmic information content of its isomorphic monoplex network are proved to be
much less distorted as the number of node dimensions increases.

It is important to remark that the results in the present article hold independently of
the choice of the encoding method or the universal programming language. This is because,
given any two distinct encoding methods or any two distinct universal programming
languages, the algorithmic complexity of an object represented in one way or the other can
only differ by a constant whose value only depends on the choice of encoding methods
or universal programming languages, but not on the choice of the object [12-15]. That
is, algorithmic complexity is pairwise invariant for any two arbitrarily chosen encodings.
Thus, although only dealing with pairs of isomorphic objects in addition to such an
encoding invariance, some may deem the existence of the distortion phenomena shown
in the present work as counter-intuitive at first glance because we will see later on in
Corollaries 7 and 17 that algorithmic information distortions can in fact result from only
changing the multidimensional spaces into which isomorphic copies of the objects are
embedded.

The remainder article is organized as follows. In Section 2, we recall necessary
concepts, definitions, and results from the literature. In Section 3, we present the previous
results achieved in [1], which correspond to the node-aligned non-uniform case. In Section
4, we study basic properties of encoded node-unaligned multidimensional networks. In
Section 5, we demonstrate the mathematical results. Section 6 concludes the paper.
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2. Background
2.1. Multidimensional networks and multiaspect graphs

We directly base our notation regarding classical graphs on [16-18] and regarding
multiaspect graphs (MAGs) on [19,20]. In order to avoid ambiguities, minor differ-
ences in the notation from [19,20] will be introduced here. In particular, the notation
of MAG H = (A,E) is replaced with 4 = («7,&), where the list A of aspects is re-
placed with &/ and the composite edge set E is replaced with &. This way, note that
o = (L (G)1),..., L (D)]i],..., o (¥)[p]) is a list of sets, where each set in this list is an
aspect (or node dimension! [21]) denoted by <7 (¢)]i].

The companion tuple of a MAG ¢ becomes then denoted by (%) [20], where

o) = (DN, |7 @)pl])

and p is called the order of the MAG. As established in [20], it is important to note that the
companion tuple completely determines the size of the node-aligned set

of all composite vertices v = (ay, .. .,a,) of 4, and as a direct consequence also determines
the size of the set
E(#) =V(¥) XV(¥)

of all possible composite edges e = ((ay,...,ap), (b1,...,bp)) of 4. This way, for every node-
aligned MAG ¢, one has &(¥) C E(¥). One may adopt the convention of calling the
elements of the first aspect of a MAG as vertices (i.e, the mathematical representations of
the nodes of the network), so that «7(¥)[1] = V(¥¢). As we will explore in more depth
in Section 4, note that the node alignment property is said to hold for a multidimensional
network iff every node belongs to (or is ascribed to) every possible permutation of node
dimensions’ elements. In the case of multidimensional networks represented by MAGs ¢
where the convention of a vertex v € &7 (¥)[1] representing a node holds, a node-aligned
MAG formally means that, for every particular permutation & € Xf:z o (9)[i] of elements
in each aspect <7 (¢)]i], where i > 2, and for every vertex v € </ (¥)[1], one has that v is
paired with & (which in turn is equivalent to the above definition of V(%) = X, .7 (9)[i]
and E(¢9) =V(¥9) XV(9) ).

We denote an undirected MAG without self-loops by ¢, = (<7, &), so that the set E. of
all possible undirected and non-self-loop composite edges is defined by

Ec(%) = {{u,v} |uveV(4)}

and & (%) C E.(%.) always holds. In a direct analogy to simple graphs, we refer to these
MAGs ¥ as simple MAGs.

Regarding graphs, we follow the common notation and nomenclature [16,18,22]: we
denote a general (directed or undirected) graph by G = (V, E), where V is the finite set of
vertices and E C V x V;if a graph only contains undirected edges and does not contain
self-loops, then it is called a simple graph. A graph G is (vertex-)labeled when the members
of V are distinguished from one another by labels such as v1, vy, ..., v)y|. If a simple graph
is labeled this way by natural numbers, i.e., V = {1,...,n} withn € N, then it is called a
classical graph.

In a direct analogy to classical graphs, if a simple MAG ¥, is (composite-vertex-
)labeled with natural numbers (i.e., for every i < p, &/ (9)[i]| = {1,..., | (9)[i]|} C N),
then we say that ¢, is a classical MAG. For the present purposes of this article, all graphs
G will be classical graphs and all MAGs will be simple MAGs (whether node-aligned or

1

In this article one can employ the terms “aspect” or “node dimension” interchangeably.
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node-unaligned). Also note that a classical graph G is a first-order (i.e., p = 1) classical
MAG ¥4, with V(G) = V(¥4,) = {1,...,|V(%.)|}; and, thus, the term “vertex’ shall not be
confused with term ‘composite vertex’, since they refer to same entity only in the case of
first-order MAGs.

We refer to the discrete multidimensional space of a MAG as the discrete cartesian
product Xf:z o (9)[i] into which the nodes of the network are embedded. Thus, for
classical MAGs, note that the companion tuple completely determines the discrete multidi-
mensional space of the MAGs; and in this particular case the set )X 5;2 o/ (94)[i] then becomes
a finite discrete space of (p — 1)-tuples of natural numbers. Later on in Section 4, we will
explore other extended forms of the companion tuple in order to deal with node-unaligned
MAGs. With the purpose of avoiding confusion, node-unaligned MAGs will be denoted by
%2 and we stick with notation ¢ for node-aligned MAGs only.

In the particular case <7 (¥4)[i] = </ (¢)][j] holds for every i,j < p, we say the multidi-
mensional space of the MAG is uniform.

Also note that the number of node dimensions of a multidimensional network that
is mathematically represented by a MAG is given by the value p, i.e., the order of the
MAG. Thus, arbitrarily large multidimensional spaces formally refers to arbitrarily large
values of p. Unlike for example in [23,24], in which multidimensional networks refers
basically to multiplex networks [25-27], we adopt the convention of defining a general
multidimensional network as a network that has at least one extra node dimension—this node
dimension being for example a set of time instants or a set of layers. As a consequence,
both multilayer networks [23,25,27], dynamic networks [28-31], and dynamic multilayer
networks [19,32,33] become particular cases of multidimensional networks. Also note
that the traditional networks which have no extra node dimension are called a monoplex
(i.e., single-layer or monolayer) network [25-27] and, equivalently, can be mathematically
represented by a graph. In this article, we are focusing on the multidimensional networks
that can be mathematically represented by MAGs (and, therefore, each aspect of a MAG is
an equivalent mathematical counterpart of a node dimension). We will employ hereafter
the term multidimensional network to refer to these networks represented by MAGs.

As established in [19], one can define a MAG-graph isomorphism analogously to the
classical notion of graph isomorphism: a (node-aligned) MAG ¥ is isomorphic to a graph
G iff there is a bijective function f : V(¢) — V(G) such that

ec&(Y) < (f(m(e)) f(male))) € E(G),

where 71, is a function that returns the origin composite vertex of a composite edge and 714
is a function that returns the destination composite vertex of a composite edge.

In order to avoid ambiguities in the nomenclature with the classical isomorphism in
graphs (which is usually a vertex label transformation) we call:

e such an isomorphism between a MAG and graph from [19] a MAG-graph isomorphism;

e the usual isomorphism between graphs [16,18] as graph isomorphism;

e and the isomorphism between two MAGs ¢ and ¢’ (i.e., (u,v) € &(9) iff (f(u), f(v)) €
&(9') ) as MAG isomorphism.

It is shown in [19] that a (node-aligned) MAG is isomorphically equivalent to a graph:

Theorem 1. For every MAG ¥ of order p > 0, where all aspects are non-empty sets, there is a
unique (up to a graph isomorphism) graph Gy = (V, E) that is MAG-graph-isomorphic to ¢,
where )
V(Gy)| = [T @)nl| = V()]
n=1

Later on in Section 4, we will introduce a variant of this MAG-graph isomorphism in
order to deal with the node-unaligned case.

As one of the core results of the present article, we shall show that, although both a
MAG and its isomorphic graph can be encoded and both represent the same abstract rela-
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tional structure, they may diverge in terms of compressibility (or algorithmic information
content) in the general case.

2.2. Algorithmic information theory (AIT)

In this section, we recover some basic notations and definitions from the literature
regarding algorithmic information theory. For an introduction to these concepts and
notation, see [12-15].

First, regarding some basic notation, let /(x) denote the length of a string x € {0,1}*.
Let (x)y denote the binary representation of the number x € N. Let x [, denote the
ordered sequence of the first n bits of the fractional part in the binary representation of
x € R. Thatis, x [,= x1X2...%,, where (x); = y.X1X2...XX41 ... withy € {0,1}* and
X1,%2,..., X, € {0,1}. We denote the result of the computation of an arbitrary Turing
machine M with input x € L by the partial computable function M: L — L. In the
particular case M is a universal Turing machine we denote it by U. Let L{; denote a binary
prefix-free (or self-delimiting) universal programming language for a prefix universal Turing
machine U.

As usual, let (-, - ) denote an arbitrary computable bijective pairing function [14,15],
which can be recursively extended in order to encode any finite ordered n-tuple in the form
G

Let w* denote the lexicographically first p € Ly; such that /(p) is minimum and
U(p) = w. This way, the algorithmic information content of an object w is given by the
(unconditional) prefix algorithmic complexity (also known as K-complexity, Kolmogorov
prefix complexity, self-delimited program-size complexity, or Solomonoff-Kolmogorov-
Chaitin complexity for prefix universal Turing machines), denoted by K(w), which is the
length of the shortest program w* € Ly; such that U(w*) = w. The conditional prefix
algorithmic complexity of a binary string y given a binary string x, denoted by K(y |x), is
the length of the shortest program w € Ly{; such that U((x,w)) = y.

A real number (or infinite binary sequence) x € [0,1] C R is said to be 1-random
(Martin-Lof random, K-random, or prefix algorithmically random) [14] if, and only if, it satisfies
K(x [,) >n—0(1),

where n € N is arbitrary.

With respect to weak asymptotic dominance of functions f and g, we employ the usual
notations: f(x) = O(g(x)) for the big O notation when f is asymptotically upper bounded
by g; f(x) = o(g(x)) when g strongly dominates f asymptotically; and f(x) = Q(g(x))
for the big Omega notation when f is asymptotically lower bounded by g;

As a consequence of the Borel normality of 1-random real numbers [13,34], we have
that, for every 1-random x € [0,1] C R, there is a large enough 1y € N such that, for every
n > ng, "

#(x ) = 3 +o(n)

holds, where #; (x [,) denotes the number of occurrences of 1’s in x [,.

3. The node-aligned non-uniform case
3.1. Basic properties of encoded node-aligned multiaspect graphs

In a general sense, a (node-aligned) MAG ¥ is said to be encodable (i.e., recursively
labeled, or with a univocal computably ordered data representation) given 7(%;) iff there is
an algorithm that, given the companion tuple 7(%;) as input, computes a bijective ordering
of composite edges e € E;(¥.) from any pair of composite vertices v,u € V(%). That is,
if the companion tuple 7(¥;) of the MAG ¥, is known, then one can computably retrieve
the position of any composite edge e = {u, v} in the chosen data representation of 4, from
both composites vertices u and v, and vice-versa. This way, following the usual definition
of encodings, a MAG is encodable given 7(%;) iff there is a algorithm that, given 7(¥,) as
input, can univocally encode any possible & (%) that shares the same companion tuple.
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As expected, MAGs that have every element of its aspects labeled as a natural number
can always be encoded. The proof of Lemma 2 follows directly from the definition of MAG
and the recursive bijective nature of the pairing function.? In other words, a classical MAG
can always be encoded if the information necessary to determine the companion tuple
T(%,) is previously given.

Lemma 2. Any arbitrary classical (node-aligned) MAG ¥ is encodable given T(¥,).

The encodability given (%) also implies the existence of an algorithm that, given a
string x € {0,1}* of length |E.(%.)| as input, computes a composite edge set &(¥.) and
there is another algorithm that, given the encoded composite edge set £(¥;) as input,
returns a string x. Such strings uniquely represent (up to a MAG isomorphism and/or up
to a reordering of composite edges) the characteristic function (or indicator function) of
pertinence in the set £(¥.) C E (%), and thus we call them as characteristic strings of the
MAG:

Definition 1. Let (el, cee el&(%)l) be any arbitrary ordering of all possible composite edges of

a simple MAG 9.. We say that a string x € {0,1}* with [(x) = |Ec(%.)| is a (node-aligned)
characteristic string of a simple MAG ¥4, iff, for every ¢; € Ec(%),

ej € 8(9.) <= thejthdigitinxis1,
where 1 < j <I(x).

In order to ensure uniqueness of representations (now only up to an identity automor-
phism, if the sequence (6’1, YR, (gc)‘) is previously fixed) from which the algorithmic
complexity are calculated, one may also choose to encode a MAG into a string-based repre-
sentation using the pairing function (-, -) and a fixed ordering/indexing of the composite
edges:

Definition 2. Let (el, ey E‘Ec(gc)‘) be any arbitrary ordering of all possible composite edges

of a simple MAG %,. Then, (&§(%.)) denotes the (node-aligned) composite edge set string
({e1,21),--.,{en, zn)) such that

zi=1 << eieéo(gc),
where z; € {0,1} with1 < i < n = |E.(¥;)|.

Note that a composite edge set string is an encoding of a composite edge list, which in
turn is a generalization of edge lists [36] so as to deal with MAGs instead of graphs. Thus,
the reader may also interchangeably call the composite edge set string by composite edge list
encoding.

Also note that composite edge set strings are strictly tied to the way one chooses
to encode MAGs given the companion tuple. In other words, once the chosen encoding
inherently establishes an ordering (el, s €y e\JEc(%c)I) of composites edges, the only
entities that vary in the composite edge set strings are the values of z1, zy, . .., 0r /(4| - For
example, as shown in [35], the composite edge sets strings can be constructed from encoding
a MAG ¥, (given the companion tuple 7(%;)) using the fixed programs py,p, € {0,1}*
and the chosen computable bijective pairing function (-, - ) in such a way that, for every
T(%.) witha;, b;,j € Nand 1 <i < p € N, the following hold at the same time:

2 The reader can find a proof of Lemma 2 in [35].
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@ if (a1,...,ap), (b1,...,bp) € V(4,), then

U(((a1,...,ap), (b1, -, by), ((T(%)), p1))) = ()2
(ID) if (a1,...,ap) or (by,...,by,) does not belong to V(¢), then

U(<<{11,. . .,Ilp>, <b1/~ . 'rbp>r <<T(gC)>fp1>>) =0

(IIT) if
| << [E@)| = |Wc>|22— V()
then
U (%)), p2))) = (- vap), (b bp)) = (),
0% if

V(%) — V(%)
2

1< ] < |EC(%>| =

does not hold, then

U, ((T(4)) p2))) = ({1, ap), (br, - bp)) = (0)

In the case of graphs (or monoplex networks), we remember that, as for example
shown in [35], there is always a unified and decidable way to encode a sequence of all
possible undirected edges given any unordered pair {x,y} of natural numbers x,y € N,
for example by encoding characteristic strings or adjacency matrices of arbitrary finite

size. Thus, if the ordering of the sequence (el, € OB, )O is fixed, then encoding

classical graphs with characteristic strings or with composite edge set strings becomes
Turing equivalent and, therefore, both are also equivalent in terms of algorithmic infor-
mation (see Lemma 4). This is indeed an underlying basic property previously explored,
e.g., in [3,6,9]. However, unlike classical graphs, we shall see later on in Corollaries 6
and 16 that the relationship between characteristic strings and composite edge set strings
in the case of simple MAGs (whether node-aligned or node-unaligned) does not always
behave so well. Additionally, it was shown in [37] that graph isomorphisms do not always
preserve algorithmic randomness of infinite graphs. Unlike the infinite case, note that the
present article only deals with finite MAGs and finite graphs and with infinite families of
finite MAGs and finite graphs. Nevertheless, we shall prove in Corollaries 7 and 17 that
MAG-graph-isomorphisms between (finite) simple MAGs and (finite) classical graphs do
not always preserve algorithmic information.

Before starting the investigation of examples that display worst-case algorithmic
information distortion generated by MAG-graph-isomorphisms, we can promptly establish
in Lemmas 3 and 4 the upper bound for the algorithmic information distortion between
any simple MAG and its MAG-graph-isomorphic classical graph. If the ordering assumed
in Definition 1 matches the same ordering in Definition 2, we have in Lemma 3 below that
both the MAG and its respective characteristic string are indeed “equivalent” in terms of
algorithmic information, but except for the minimum information necessary to encode the
multidimensional space (e.g., the algorithmic information of the encoded companion tuple
in the form (7(%.)) = (| (9)[1]|,...,197(9)[p]|))- As expected, the proof follows easily
from the fact that an ordering of composite edges is always embedded into the notion of
encodability by composite edge set strings. (Complete proofs of Lemmas 3 and 4 can be
found in [35, Lemma 3.2]).
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Lemma 3. Let x € {0,1}*. Let ¢ be an encodable (node-aligned) simple MAG given (%) such
that x is the respective characteristic string. Then,

K((6(4)) |x) < K((t(%))) +O(1) M
K(x| (£(4))) < K((t(#))) +O(1) @
K(x) = K((£(%))) = O(K((x(#))) ) ©)

Note that there is always a way to build a computable sequence (el, e €|1EC(G)|) for

any classical graph. Thus, since a graph is a MAG of order 1 (and in this case character-
istic strings and composite edge set strings become Turing equivalent), Lemma 3 can be
improved in the case of classical graphs so that:

Lemma 4. Let x € {0,1}*. Let G be a classical graph, where x is its characteristic string,

Ec(G) = {{u,v} | u,v € V}, and the sequence (el,...,e“EC(G”) is computable. Then,

K((E(G)) [x) <O(1) 4)
K(x|(E(G))) <O(1) )
K(x) = K((E(G))) £ O(1). (6)

3.2. A worst-case algorithmic information distortion in node-aligned multidimensional networks

Basically, Lemma 3 assures that the information contained in a simple MAG ¥ and in
the characteristic string are the same, except for the algorithmic information necessary to
computably determine the companion tuple. Unfortunately, one can show in Theorem 5
below that this information deficiency between the data representation of a MAG (in the
form e.g. (£(%))) and its characteristic string cannot be much more improved in general.
In other words, as we show in Theorem 5, there are worst-case scenarios of multidimensional
spaces in which the algorithmic information necessary for retrieving the encoded form of
the MAG from its characteristic string is close (except for a logarithmic term) to the upper
bound given by Equation 1 in Lemma 3. This shows a fundamental difference between
encoding MAGs with characteristic strings and encoding MAGs with composite edge set
strings. The proof of Theorem 5 can be found in [1].

Theorem 5. There are arbitrarily large® encodable simple (node-aligned) MAGs %, given (%)
such that

K((t(#))) +0(1) > K((6(%) | x) > K((1(%))) — O log, (K((7(%.)))) )

with K((&(%:))) > p — O(1) and K(x) = O(log,(p)), where x is the respective characteristic
string and p is the order of the MAG ¥,.

As a consequence of Theorem 5, we show in Corollary 6 below a phenomenon that
can only occur for families of node-aligned multidimensional networks embedded into
arbitrarily large and non-uniform multidimensional spaces.

Specifically, Corollary 6 (and also Corollary 16 later on) shows that there are two
infinite sets of objects (in particular, one of data representations of multiaspect graphs
and the other of strings) whose every member of one set is a particular encoding of a
member of the other, but these members of the two sets are not always equivalent in
terms of algorithmic information, which is a phenomenon that some may deem to be
counter-intuitive at first glance:

3 And, in particular, those with non-uniform multidimensional spaces. As we will see later on in Lemma 14, this exponential distortion presented in
Theorem 5 can only occur if the multidimensional space is not uniform.
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Corollary 6. There are an infinite family F of simple (node-aligned) MAGs and an infinite set X
of the correspondent characteristic strings such that, for every constant ¢ € N, there are 4, € F and
x € X, where x is the characteristic string of 4. and

0(log, (K((£(%)))) ) > c+K(x). )

The proof of Corollary 6 can be found in [1].

We can now combine Corollary 6 with Theorems 1 and 5 in order to show that,
although for every MAG there is a graph that is isomorphic to this MAG, they are not
always equivalent in terms of algorithmic information, where in fact the distortion may be
exponential with respect to the algorithmic information of the graph:

Corollary 7. There are an infinite family Fy of simple (node-aligned) MAGs and an infinite family
F, of classical graphs, where every classical graph in F, is MAG-graph-isomorphic to at least
one MAG in Fy, such that, for every constant ¢ € N, there are 4, € Fy and a Gy, € F, that is
MAG-graph-isomorphic to ¢, where

O log (K((£(%)))) ) > ¢ +K((E(Gg))).

The proof of Corollary 7 can be found in [1]. Besides showing that node-aligned
multidimensional networks with non-uniform multidimensional spaces can display an
exponentially larger algorithmic information distortions with respect to its isomorphic
monoplex network, Theorem 5 together with Corollary 7 also show that these distorted
values of algorithmic information content grow at least linearly with the value of p (i.e.,
number of extra node dimensions). With this lower bound for the worst-case distortion
increasing rate as we established here, future research is needed for investigating the upper
bound for distorted values of algorithmic information content with respect to the number
of extra node dimensions.

4. The node-unaligned cases

With the purpose of addressing other variations of multidimensional networks in
which a node not belonging to a certain a € X! _, &/ (%)[i] has an important physical
meaning, the node alignment can be relaxed. This gives rise to multidimensional networks
that are not node aligned, such as node-unaligned multilayer networks [25] or node-
unaligned multiplex networks [26].

As a multiplex network is usually understood as a particular case of a multilayer
network [23,25,27] in which there is only one extra node dimension (i.e., d = 1), we may
focus only on a mathematical formulation of multilayer networks that allows nodes to be
not aligned, which is given by M = (Vj, Ey, V, L) [25], where:

1. V denotes the set of all possible vertices v;

2. L = {L,}_, denotes a collection of d € N sets L, composed of elementary layers
o€ Ly

3. Vm CV xLix--xL;denotes the subset of all possible vertices paired to elements
of Ly X --- X Ly;

4. Ep C Vi x V) denotes the set of interlayer and/or intralayer edges connecting two

node-layer tuples (v, a1, ..., 05) € V.

In this regard, a multilayer network M is said to be node-aligned iff Vi; = V x L; X
+++ x Lg. In the case each « € X! _, &7 (%)[i] can be interpreted as (or is representing) a

layer, it is important to note that there are some immediate equivalences [21] between ¢
and M:

e Vs the usual set of vertices, where V(¥¢) = o7 (9)[1];

e eachset L, is the (a — 1)-th aspect & (¥ )[a — 1] of a MAG ¥;

e  Vjis asubset of the set V(%) of all composite vertices, where every node-layer tuple
(v,49,...,04) € Vi is a composite vertex v € V(¥);
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e Ey C &(9)is asubset of the set of all composite edges (u, v) for which u,v € V.
Thus, if Vjy = V X L1 X - -+ X Ly, then one will have that Vj; = V(¢) and Ej = £(9).
This way, besides notation distinctions, it directly follows that a node-aligned multilayer
network M is totally equivalent to a MAG ¥; and, therefore, every result in this paper
holding for simple node-aligned MAGs %, automatically holds for node-aligned multilayer
networks M that only have undirected edges and do not contain self-loops.

In addition to the physical interpretation of nodes and layers that could be intrinsic to
a node nonalignment of real-world networks and new methodological challenges in multi-
dimensional network analysis that arise from the fact that the multidimensional network is
not node unaligned, it becomes important to investigate the network complexity increase
(in terms of compressibility or irreducible information content) when the multidimensional
network is node-unaligned (a problem also raised in [21]).

With this purpose of extending our results to the node-unaligned case, we need to
introduce a variation of MAGs so as to allow into the mathematical formalization the possi-
bility of some vertices not being paired with some a’s, where & € X", &7 (%)[i]. Moreover,
we need that node-aligned MAGs become particular cases of our new formalization such
that the algorithmic information between the two formalizations becomes equivalent when
the MAG is node-aligned, which we will show in Lemma 11. To this end, we introduce a
modification on the definition of MAG so that the major differences are in set of composite
vertices and, consequentially, in the set of composite edges.

Definition 3. We define a node-unaligned MAG as a triple 9, = (&, Vya, ua) in which
A = (A (Gua) (1], ..., L (Gua)il, ..., F(%ua)p])

is a list of sets (each of each is an aspect of G,),

P
Vua (guu) - V(gmﬂ = >< JZ{(guu)[i]
i=1

is the set of existing composite vertices, and
Eua € Eyg (guu) =V (guu) X Vg (guu)
is the set of present composite edges (u,v).

The definition of simple node-unaligned MAGSs %,uc = (47, V4, 64a) follows analo-
gously to the aligned case by just restricting the set of all possible composite edges, so
that

Euac(guuc> = {{u/V} | uvev, (guuc>}

and &4 (Yuac) C Eyac(%uac) hold. In addition, all other terminology of order, multidimen-
sional space, uniformity, (composite-vertex-)labeling, and classical MAGs apply analogously as
in Section 2.1.

Also note that the connections in a node-unaligned MAG are composed of two com-
posites vertices that belong to a subset of the V(¥,,). This immediately implies that, if
Gug = (A, Vyq,6a) and & = (7, &), where o is fixed and &, C &, then there is a MAG
isomorphism between ¥,,; and a subMAG [35] of 4.

As in the node-aligned case, in order to define a unaligned version for the companion
tuple, it should completely determine the size of the set Eua(%ua) and, if 9,4 is a classical
MAG, then the companion tuple should completely determine the multidimenional space
of 4,,,. In this sense, a node-unaligned version of the companion tuple also needs to carry
the necessary and sufficient information for computably retrieving the set V,;(%,,) from
A (Gua).
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Definition 4. The node-unaligned companion tuple Ty, of a MAG Y, is defined by the pair of
tuples

ta@ia) = (17 G 1], 1 Gaa) P, (111, p))) )

such that, for every v; € V(%,,) in a previously chosen arbitrary computable enumeration of
V(guu)/
VZ S Vua(guu) e ml - 1 ’

where m; € {0,1} and 1 < i < |V(%,4)|.

As for encoding Ty,, one can also employ the recursive pairing function (-, -) as usual:

(T (@) = ({1 G U] -1 Gua) P11}, (s gy ))

Note that there are other alternative forms of computably defining companion tuples, for
example as a two-dimensional array in which the first dimension stores the indexes of
the composite vertices and the second dimension stores the entries* ‘belongs to V,,” or
‘does not belong to V,,’. As our purpose is to achieve analogous results to those obtained
in Section 3.2, we employ hereafter the encoding in the form (7,,(%,4)), but nevertheless
the following results hold for any other Turing equivalent way of encoding the companion
tuple as in the form (7,4(%,4)) from Definition 4.
It is also interesting to note that the bit string

ML TV (G)|

is a form of characteristic string, but for the set V,,, instead of a characteristic string for the
entire MAG as in Definition 1.
The MAG-graph isomorphism also suffers a slight modification:

Definition 5. ¥, is unaligning MAG-graph-isomorphic to a graph G iff there is a bijective
function f: V(%) — V(G) such that

e € &ua(Yua) € Bua(%ua) <= (f(mo(e)), f(ra(e))) € E(G),

where 1, is a function that returns the origin composite vertex of a composite edge and 7 is a
function that returns the destination composite vertex of a composite edge.

This way, we can obtain the following theorem analogously® to the proof of Theorem
1:

Theorem 8. For every MAG %, of order p > 0, where all aspects are non-empty sets, there is
a unique (up to a graph isomorphism) graph Gg = (V,E) that is unaligning MAG-graph-
isomorphic to ¥,,, where

‘V(G{%a” = Wua(%uu” :

Short proof. Both the proof of existence and uniqueness follow analogously to the one
of [19, Theorem 1, p. 54]. Note that [19, Theorem 1, p. 54] is re-written as Theorem 1 in
Section 2.1 with minor notation changes. For the proof of existence it suffices to: construct
the set V(G ) of vertices from |V, (%,q)| arbitrarily labeled vertices, instead of [V(%,)|
arbitrarily labeled vertices; and replace the bijective function f : V(%,) — V(G ) with
Vi (Gua) — V(Gé‘ja ). For the proof of uniqueness, besides using function f’ instead
of f, just replace the bijective function j : V(%) — V(Jg,,) with j" : Ve (%) = V(Jg,,)-

4 Or a Boolean variable instead of these alphanumerical strings.

5 And thus we choose to present only a short proof indicating where the modifications in the proof of [19, Theorem 1, p. 54] should take place.
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All of the other arguments in [19, Theorem 1, p. 54] then directly applies, except for the
necessary respective notation changes. [

It is important to note our choice of notation distinction between the node-aligned
and the node-unaligned case when a graph is MAG-graph-isomorphic to a MAG. The
graph Gg,  is said to be aligning MAG-graph-isomorphic to the MAG when the set of possible
composite vertices is complete, that is, when it is taken from V(%,,). On the other hand,
the graph G is said to be unaligning MAG-graph-isomorphic to the MAG (which is the case
of Def1n1t1on 5 Theorem 8, Corollary 17, and Theorem 18.(I)(b)) when the set of possible
composite vertices are taken from V,;(%,,) instead of V(%,,).

4.1. Encoding node-unaligned multiaspect graphs

Encodability of node-unaligned MAGs given the companion tuple works in the same
way as the node-aligned case in Section 3.1. That is, a node-unaligned simple MAG %,
is encodable given Ty, (%uac) iff there is an algorithm that, given (T (%uac)) as input, can
univocally encode any possible &;,5(%uac) that shares the same companion tuple. However,
there is some important nuances in the composite edge set string that need to be taken into
account in order to ensure that (T, (%)) is in any event retrievable from (&, (Guac))-

First, as in the node-aligned case, note that the encodability of classical node-unaligned
MAGs given the companion tuple can be promptly proved to hold:

Lemma 9. Any arbitrary node-unaligned classical MAG %4 is encodable given Tya(Guac)-

Proof. For classical node-unaligned MAGs, we have that, for every i < p,

A (Guac)[i] = {1, ..., |7 (Guac)li]|} CN

and
Euac(guac) = {{11, V} | uvevy, (%uac)}

hold by definition. Thus, since the recursive bijective pairing function (-, -) can be arbitrarily
chosen and, therefore, the encoding of the node-unaligned companion tuple in the form

(T (@ae)) 1= (1 Guac) W] - |5 Gua) [P, (s ) )

univocally determines the value of p, the maximum integer value for each aspect, and the
set Vi (%ua), it suffices to demonstrate the existence of programs p’;, p’, € {0,1}* such
that, for every T,4(%yac) with a;, b;,j € Nand 1 <i < p € N, the following hold at the same
time:

1)) if (al,. .. ,ap), (bl,. . .,bp) € Vg (%ac), then

U((ar,...,ap), (b1, ..., bp), ({Tua(“uac)), '1))) = ()2
(I1) if (a1,...,ap) or (by,...,by) does not belong to Vi (%yac), then

U(( (o), (b by, (TuaBae)) P'1))) = 0

) i
. Vull guﬂf 2 - Vuﬂ gMﬂC
1< < [Bune(Guae)| = Lol NuaGia)]
then
U (G ((Tua(Guac)) P'2))) = ((a1, - oap), (b, Bp)) = (eg) 5
vy if

Ve Guae)* = Via(Guac) |
2

1<;< |Euuc(guac)| =
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does not hold, then

U((, ((tua(Guac)), p'))) = ({an, ..., ap),{b1, ..., bp)) = (0) .

To construct a program that satisfies (I) and (II), let p’; be a fixed string that represents
on a universal Turing machine the algorithm that, given (Tya(%uac)), <a1, ... ,ap>, and
(by,...,bp) as inputs:
(i) builds a sequence from a lexicographical order for the set
V(Guac) = XE_| & (Yuac)i], which is always possible because the values
| (Guac)[1]], - - -, |9 (Guac) [p]| are given and the labels are natural numbers;
(ii) eliminates (while preserving the previous lexicographical order) in this sequence
built on Step (i) those composite vertices v; € V(%) for which m; = 0, according

to the given sequence (my, ..., mw(%ac)‘) in (Tua (Yuac));

(ili)upon this lexicographical order for the set V,;(%,4) resulting from Step (II),
builds a sequence of composite edges (v, u) € Ey;(%ac), where v,u € V0 (%ac),
also following a lexicographical order;

(iv)eliminates in this sequence of composite edges resulting from Step (III) those
composite edges e; € E;;(%yqc) that are self-loops (i.e., when v = u holds) or
that are symmetric pairs (i.e., when (u,v) occurs given that (v, u) has already
occurred in the sequence), while preserving the previous lexicographical order of
Step (III);

(v) searches for ((a1,...,ap), (b1,...,bp)) or ((b1,...,bp), (a1,...,ap)) in the previ-
ous sequence of composite edges for the set Eyc(%ac) that was built in Step
@iv);

(@) if ((a1,...,ap),(b1,...,bp)) or ((b1,...,bp), (a1,...,4p)) is found, then
returns the place j € N for which ((ay,...,ap), (b,...,by)) or
((b1,...,bp), (a1,...,ap)) occurred in the previous sequence of composite
edges built in Step (iv);

(b) if ((a1,...,ap),(b1,...,by)) or ((b1,...,bp), (a1,...,ap)) is not found,
then returns 0.

To construct a program that satisfies (III) and (IV), a similar algorithm can define p/,: it
works exactly in the same way until Step (iv) of p’;, but in the new ‘Step (v)’ program
p’, searches for the j-th element in the sequence generated by Step (iv) and returns the
respective pair of tuples (or returns (0), if 1 < j < |Ey4c(%uac)| does not hold). Finally, note
that the existence of such programs p’; and p’, is (Turing) equivalent to say that the MAG
“G,1qc is encodable given Ty (Gyac).b O

Secondly, note that the characteristic string of a node-unaligned MAG is defined in a

similar way as in Section 3.1:

Definition 6. Let (el, ce, e‘Em(gm”) be any arbitrary ordering of all possible composite edges

between existing composite vertices of a node-unaligned simple MAG %,,oc. We say that a string
x" € {0,1}* with I(x") = |Eyac(uac)| is a node-unaligned characteristic string of ,q. iff, for
every ej € Eyac (Guac),

ej € Eua(Guac) <= the j-th digit in x'is1,
where 1 < j <I(x').

Now, for the node-unaligned composite edge set string, the definition may seem
not so straightforwardly translated from Definition 2. As one can see below, it is based

6 The reader is invited to note that, if Step (ii) is eliminated and (7(%)) is given as input instead of (Tys(%uac)), then analogous versions of these two
algorithms can be employed to prove the previous node-aligned case in Lemma 2.
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on a sequence of the |E¢(%,c)| composite edges, and not on the sequence of |E;ac(%yac) |
composite edges. This is because one needs to embed into node-unaligned composite
edge set strings not only the characteristic function of the set &,;(%ac), as in the node-
aligned case, but also the characteristic function of the set V,,;(%,,c) (Which becomes in
turn determined by the k;’s and #;’s in the following definition):

Definition 7. Let (61, e OB (Gac) |) be any arbitrary ordering of all possible composite edges of

a node-unaligned simple MAG %yac. Then, (Euq(%uac)) denotes the node-unaligned composite
edge set string ((e1, 2], k1,h1), ..., (en, 2, kn, hn) ) such that:

Z; =1 < ¢ ¢ éaua(guuc) ,

ki=1 < (e;=(v,u) A vE Vy(Guac))

and
hi=1 < (ej = (V,u) Aue Vua(guac)) ’

where 2, ki, h; € {0,1} with1 <i < n = |Ec(%yac)|.

This way, we guarantee not only that the characteristic string x can always be com-
putably extracted from (&,4(%ac)), but also that the set V,; (%) can be computed if
(Eua(%uac)) is known a priori as input. This will be important in the proof of Theorem
13 later on. Moreover, once the ordering of E(%,,,c) assumed in Definition 7 is preserved
by the subsequence that exactly corresponds to the ordering of E;c(%4c) assumed in
Definition 6, we have in Lemma 10 below that both the node-unaligned simple MAG
and its respective node-unaligned characteristic string become “equivalent” in terms of
algorithmic information, but again (as occurred for the node-aligned case) except for the
minimum information necessary to encode the node-unaligned companion tuple:

Lemma 10. Let x' € {0,1}*. Let Gyac be an encodable node-unaligned simple MAG given
Tua(Giuac) such that x' is the respective node-unaligned characteristic string. Then,

K((&ua(Guac)) | ¥') < K((Tua(Guac))) + O(1) 8)
K(x' | (61a(Guac))) < K((Tua(Guac))) +O(1) )
K(x') = K({fua(%uac))) O (K ((ua (%uac))) ) (10)

Proof. From the assumption of encodability of ¢ given T,a(%ac) in Lemma 10, first note
that there must be programs p’;, p’, as defined in the proof of Lemma 9. Moreover, note

that the sequence (61, e 1 OB (Gac) ‘> can be computably built from

(| (%ua) ]|, - - ., | (%ua) [P]]) 0 (Tua(Zuiac)). Remember that, if (ay,...,ap) or (by,...,by)
does not belong to V4, (%ac), then

U({{a1,...,ap),{b1,...,bp), ({Tua(%uac)), P'1))) =0.

Thus, the sequence (61, cee, e‘EWC(%M”), which is a subsequence of (el,. .y E‘Ec(gwc)‘), can

be computably built from (T, (%uac)). Now, let x’ be the correspondent characteristic string
(as in Definition 6) of ¢,,c. Therefore, one can construct other programs p and g with
(Tua(uac)) already given as first input so that, respectively: p returns x’ given (&4 (%uac))
(or given (&,,(Guac))™); and g returns (&q(%uac)) given x’ (or given x'*). In other words,
string (&ua(%uac)) is Turing equivalent to string x’, if (Tyq(%uac)) is given. This always
holds because the values of x/, ..., xiEm (Gue)| that define the node-unaligned caracteristic
string x’, where x’ :== x} - - - x"Em ()| @€ cOmputably embedded into the composite edge

set string (&,4(%uac)) as a subsequence, since, for 1 < i < |E;(%,4c)|, wherever k; = 0 or
h; = 0 occurs one has that z, = 0 also occurs. This way, program g just needs to assign
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z; = 0 wherever k; = 0 or h; = 0 (which are determined by the values of mj, ..., MY (Gyae)|
in (Tya(%uac))) and read the values of x],.. ., x"Elmc(%M” in order to insert each of these
in the right order wherever k; = 1 and h; = 1. Conversely, program p can computably
extract X’ from (&uq(%uac)) by ignoring those z; wherever k; = 0 or ; = 0.7 Then, from
the minimality of K(-), we will have that Equations 8 and 9 hold because of the existence
of programs g and p respectively. Finally, from Equations 8 and 9, one can then achieve
Equation 10 using basic inequalities in AIT regarding unconditional and conditional prefix
algorithmic complexity. [

Note that Lemma 10 holds for any other form of encoding a node-unaligned sim-
ple MAG that happen to be equivalent to node-unaligned composite edge set strings
(Eua(Yuac))- For example, one can equivalently encode (&yq(%uac)) as an three-dimensional
array composed of positive integers, Boolean variables, and lists: the first dimension stores
the index value (ay,...,a,) of each composite vertex v = (a1,...,a,) € V(%c); the sec-
ond dimension stores a Boolean value determining whether the composite vertex in the
first dimension exists or not; and the third dimension stores a list containing the index
values of each composite vertices with which the composite vertex in the first dimension
forms a composite edge.

As we saw in the node-aligned case, we shall see in the next section that node-
unaligned characteristic strings alone are not in general equivalent to composite edge set
strings (&,a(%uac)). However, in any event, Lemmas 3 and 10 together with Lemma 4
directly establishes that the algorithmic information distortions are always upper bounded
by the algorithmic information carried by the companion tuple, whether node-aligned
or node-unaligned. Thus, even in the worst-case scenario, the value of the algorithmic
complexity of the companion tuple times a independent constant can be always applied
as an error margin for the algorithmic information distortions between simple MAGs and
their isomorphic classical graphs.

5. Worst-case algorithmic information distortions

In this section, we now investigate worst-case algorithmic information distortions for
node-unaligned MAGs when the multidimensional space is arbitrarily large. In particular,
we study large multidimensional spaces that are non-uniform or uniform. Like we saw in
Section 3.2, we show in the following theorems that there are cases in which the algorithmic
information necessary for retrieving the encoded form of the node-unaligned simple MAG
from its characteristic string is close (except for a logarithmic term) to the upper bound
given by Equation 8 in Lemma 10.

Before heading toward the theorems themselves, it is important to show the two cases
in Lemmas 11 or 12 for which the set V,,4(¥,4c) trivializes the problem either by reducing
it back to the node-aligned case as in Section 3.2 or by reducing it to a problem of just
inserting empty nodes.

The first trivializing case guarantees the consistency of our definitions of node-aligned
and node-unaligned MAGs:

Lemma 11. Let 9y, be a node-unaligned simple MAG with V5 (%uac) = V(%uac), where x is its
node-aligned characteristic string (as in Definition 1) and x' is its node-unaligned characteristic
string (as in Definition 6). Then,

K(<gua(guuc)>) = K(<g(guac)>) + 0(1) ’ (11)
K(x) = K(x') £ O(1), (12)

and
K((tua(%uac))) = K((T(%uac))) £ O(1) (13)

7 Thus, Equation 9 in particular can be improved to K(x' | (&4(%uac))) < O(1). The same improvement can also be analogously achieved for

Equation 2.
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hold.

Proof. In order to show that K({&u(%uac))) = K((&(Guac))) £ O(1), just note that, since
Viua(Guac) = V(%uac), then all the k;’s and h;’s in (&a(%uac)) assume the value 1. Thus, ei-
ther eliminating or inserting them into the companion tuples can only add up to O(1) bits of
algorithmic information. In order to show that K({Tya(%ac))) = K({(T(%uac))) £ O(1), just

note that <m1, . T >, which appears in (7,4(%uac)), is a tuple of 1’s and the value

of |V(%,4)| can be computed directly from szl |7 (%uac) [i]|. Thus, since X, [ (Guac)[i]]
in turn can be directly computed from the string

(|4 (Guac)(1]], - - -, |9 (%uac) [p]|), which is given in both companion tuples, then either elim-
inating or inserting my, ..., my(4,, into the companion tuples can only add up to O(1)

bits of algorithmic information. Finally, since V,4(%yac) = V(%uac) and, consequentially,

(61,---,€|EW(%M)|) = (81,--.,€\EC(%M)|) ,
then one has that K(x) = K(x’) & O(1) trivially holds because x = x’. [

In fact, if Vi (%uac) = V(%ac), the same proof as Lemma 11 can be employed to
show that the strings in the left side of the equations in Lemma 11 are in fact respectively
Turing equivalent to their counterparts in the right side. Therefore, for any %, satisfying
Lemma 11, any algorithmic information distortion occurs in the same manner as in the
node-aligned case.

The second one guarantees the consistency between network connectedness and
empty nodes. An empty node [25] is a totally unconnected node that is added to the
network in order to recover the node alignment of an former node-unaligned network.
Thus, as expected, if all the composite vertices in V,,;(%,4c) are connected to at least another
composite vertex in V,, (Zuac), then all the possible unconnected composite vertices are
those that redundantly are empty nodes:

Lemma 12. Let %,4c be a node-unaligned simple MAG in which every composite vertex in
Viua(Guac) is connected to at least another composite vertex in Vy,(%yac). Then,

K(<‘g)uu (guac») = K(<g(gmw)>) + 0(1) (14)

holds and, additionally, (&ua(%uac)) is in fact Turing equivalent to (& (Gyac))-

Proof. Constructing an algorithm for returning (&(%,ac)) given (&uq(%uac)) as input is
straightforward, since one just needs to eliminate all the k;’s and h;’s in (&4 (uac))- This
way, by the minimality of K(-), we will have that K((&(%ac))) < K({&ua(Guac))) +O(1)
holds. In order to show the inverse case, note that there is always an algorithm that,
given (&(%,qc)) as input, identifies those composite vertices v for which there is an absent
composite edge (i.e., a pair in the form (e;,0) in (& (%yac)), where e; = (v, u) or ¢; = (u,v))
such that no other composite edge composed of v is present in &(%,,.). Hence, from a
list of these composite vertices, it replaces each (e;, 0) with (e;, 0, k;, h;) accordingly, where
either k; or h; is 0 wherever it corresponds to the place of v in ¢;. This way, (ua(%uac))
is computably built from (& (%)) and, by the minimality of K(-), we will have that
K((6un(%unc))) < K((€(Fuac))) £O(1). O

Note that in Lemma 12 one immediately has that <E (Gé‘;ﬂc)> can be computed
from (E(Gg,,. )) with a simple algorithm that identifies totally unconnected vertices. Fur-
thermore, one has that (E(Gg,, )) can be computed from <E <Gé‘iuc> >, if the value of

|V(§4Mc) \ Via(Guac) | is also given as input. Therefore, for any MAG satisfying Lemma 12,
the algorithmic information distortion between the MAG ¥, and the unaligning MAG-
graph-isomorphic classical graph G ~can only differ from the algorithmic information
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distortion between the MAG ¥, and the aligning MAG-graph-isomorphic classical graph
Gg,,. bY 0108, (|V(Duac) \ Vua(“uac)|)) bits of algorithmic information.

Thus, as the reader might notice, the case in which the node nonalignment introduces
more irreducible information into the composite edge set string is when V,;(%ac) #
V(%uac) and not every unconnected composite vertex is empty. Under these conditions
that demand a more careful theoretical analysis than the trivializing cases in Lemmas 11 or
12, we study now that there may also be exponential algorithmic information distortions in
the node-unaligned case.

Theorem 13. There are encodable node-unaligned simple MAGS %y given Tua(Zyac) with
arbitrarily large non-uniform multidimensional spaces such that

K(<Tua(guac)>) +0(1) > K(<<§)ua(guuc)> |x/) > K(<Tua(guac)>) - O(Ing (K(<Tua(guac)>)))

with
K(¥') = O(p) = O(log, (K((éus(%uuc))) )

where x' is the respective node-unaligned characteristic string and p is the order of 9.

Proof. This proof shares the same main underlying idea with the proof of Theorem 5 in
[1]: we construct MAGs such that, although the companion tuples are incompressible,
the characteristic strings and the respective exact number of composite vertices can be
computed with much less algorithmic information than the companion tuple demands to
be computed. However, now the node-unaligned case demands a more careful theoretical
analysis on the compressibility of the node-unaligned companion tuple, the size of the
set Vi (Yuac), and the algorithmic information necessary to compute the node-unaligned
characteristic string. First, let &,,c be any node-unaligned simple MAG such that, for every
1<i<pand1 <j<|V(%uc)|, one has that

A (Gyac)[i] = {1,2} <= thei-th digitof wy is 1
A (Guac)[i] = {1} <= thei-th digit of w; is 0
mj =1 <= thei-thdigitof w;is 1

mj =0 <= thei-thdigit of w;is 0

hold, where &1 (%uac) € Euac(%uac) and p € Nand wy, wy, x" € {0,1}* are arbitrary. Since
wy and w;y are arbitrary, let w; and wy be bit strings that, respectively, are arbitrarily long
finite initial segments y [;(,,) and ¥ [}(y,) of a 1-random real number y. From Section 2.2,
remember that, if y is a 1-random real number, then K(y [,) > n — O(1) , where n € N is
arbitrary. From Lemma 9, we have that %, is encodable given Ty, (%uac). Therefore, there
is a program ¢’ that represents an algorithm running on a prefix universal Turing machine
U that proceeds as follows:

(i) receive (&ua(Yuac))” as input;

(i) calculate the value of U((&q(%uac))”) and build a sequence (e, ..., e,) of the
composite edges ¢; € E;(%ac), where n = |E¢(%4c)|, in the exact same order
that they appear in (& (%uac)) = U((Gua(Giuac))”);

(iii)build a finite ordered set

V' = {v|e' € (e1,...,en) ,where (¢ = (v,u) V' = (u,v))};
(iv)build a finite list [A4,..., Ap] of finite ordered sets
A; = {aj|a; is the i-th element of v = (a1,...,a,) € V'},

where p is finite;
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(v) forevery i with1 <i < p, make
zj = |Ail;
(vi)build a finite ordered set
e; € (e1,...,en) , where
A (ei=(vurk=1) |
or
(e;=(u,v)Ah;=1)
(vii) build a list
[m1,m2, e ,mW/|:|
from
V'[jl e Vi, <= mj=1
V'[j] ¢ Viy <= mj:=0;
(viiijeturn the bit string
<<Zl,22, .. .,Zp>, <m1,m2, .. .,mwl|>> .
Therefore, from our construction of ¥, and Definition 4, we will have that
K((Tua(Guac))) < 1({(Gua(@uac))™, q')) < K({(Eua(Ghuac))) + O(1) (15)
holds by the minimality of K(-) and by our construction of q'. Note that
Hwa) = [V(%uac)| ,
where )
><|42{<%u6)[i]| = |V(%u6)| ’ (16)

i=1
and any | (%uc)[i]| can only assume values in {1,2}. One can trivially construct: an

algorithm that returns y [;y,) given (Tus(%uac)) as input; and another algorithm that
returns (Tua(Yuac)) given y [j,) and y [j,) as inputs. Also note that [(w;) = p and

I(ws) = |V(%ac)|- This way, we will have that®
K((Tua(Guac))) < K(Y li(wy)) + K Tiawy)) +O(1) < p+ [V(%iac)| + O(logy(p))  (17)
and, since y is 1-random,
[V (“ac)| = O(1) < K(Y ly(ay)) < K((Tua(Fuac))) +O(1) - (18)

Other property that follows from the fact that y is 1-random and w; and w, being arbitrarily
long is that both w; and w, are Borel normal [13,34], as in Section 2.2. Therefore, we will
have that

(2(§1;0(P)) i0<2(gio(p)))> _(2(%izo<n>) i0(2(;}‘,(,9))))

|Euac (guuc” = (19)

8 In particular, from the Borel normality of w; and Equation 22 later on, we can further improve Equation 17 to

K(<Tua (gunc») < |V(guuc)‘ + O(Ing(logz(‘V(guac)|))) .
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where )
[V (Guac)| = 2(5+00))

and

Via )| = 2 4 o9 (Gy00)])

This way, since the exact number of 1’s appearing in w; is given by £ & o(p), there is a
program of size

0(log, (%)) +O(log,(o(p))) +0(1) < O(log, (p))

that returns the integer value |V(%,4)| as output. Hence, since the exact number of 1’s

appearing in w, is given by w + 0(|V(%uac)|) , there is a program of size

o[ (2<2(>>>> +0(logy (o (25520)) ) ) + Oty () <

(20)
O(p) +o(p) + O(log,(p)) =
O(p)
that returns the integer value |Ey4c(%uac)| as output. Consequentially, we will have that
K(I(x")) = O(p) (21)

holds by the fact that I(x') = |Eyuac(%uac)|- Moreover, since p is arbitrarily large and
|V(Gac)| = o(h+o(p )), the Borel normality of w; also guarantees that

Q(p) = logy (|V(Fuac)l) - (22)

Now, since &4 (%uac) and p were arbitrary, we can choose any node-unaligned characteristic
string x’ such that

K(x’

I(x')) = 0(1) (23)

holds and that there are some composite vertices in V,, (%uac) that are not connected to
any other composite vertex in V,,(%,4).” Thus, from Equations 15, 18, 21, 22 and since

K(x’

I(x")) = O(1) and p is arbitrarily large, we will have that
p y larg

K(x') <K(I(x)) +0(1) <
<O(p) <
< O(logy (|V(%Guac)|)) <

< 0(10g2 (K(<Tua(guuc)>)>) <
< O(Ing (K(<£uu(gua0)>)>)

(24)

holds by the minimality of K(-) and by basic inequalities in AIT regarding unconditional
and conditional prefix algorithmic complexity. Therefore, from Equations 15 and 24 to-

9 A trivial example of x' satisfying these requirements is x’ being a binary sequence starting with 1 and repeating 0’s until the length matches
|Evac(“uac)|, but any other example of x" in which the node-unaligned MAG is denser also works, as long as it satisfies those two requirements.
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gether with basic inequalities in AIT, we will have that

K((Tua(%ac)) ) < K({6ua(%ac)) ) +O(1) <
< K(x’) JrK((éaua(guac» | /) ( ) <
< O(logz ( (Ttua(“uac))) ) ((6ua(Guac)) | x') .
(

Finally, the proof of K({Tya(%uac))) + O(1) > K({&ua(%Guac)) | x') follows directly from
Lemma 10. O

As for Theorem 5, the reader is then invited to note that the proof of Theorem 13 also
works for many other forms of companion tuples Ty (%ac). For example, keep w; and w,
being long enough finite initial segments of a 1-random real number y and then define
Tua(Zac) such that

A (Guac)[i) = {1,..., (ilp) + f2(p))} <= thei-thdigitof wis1
A (Guac)|il =1{1,..., fi(p)} <= thei-thdigitof wis0
m; =1 <= thei-th digit of w; is 1
m; =0 <= thei-thdigitofwpis0,

where fj : N — N\ {0} and f,: N — Z\ {0} are arbitrary total computable
functions.

For the purpose of comparison, the next immediate question arises from whether
there might be such a worst-case distortions between composite edge set strings and
characteristic strings when the multidimensional space is uniform and the network is node-
aligned. As the reader might expect, we show in Lemma 14 below that node-aligned MAGs
with uniform multidimensional spaces are more tightly associated to their characteristic
strings in terms of the algorithmic information and, thus, it cannot display the same
distortions as in Theorems 5 and 13, which grow exponentially with p. In particular, the
distortions in the node-aligned uniform case can only grow up to a logarithmic term of
the order p; and this algorithmic information necessary to compute the value of p can only
grow up to a double logarithmic term of length of the node-aligned characteristic string:

Lemma 14. Let ¥ be an arbitrary node-aligned classical MAG with arbitrarily large uniform
multidimensional spaces, where |V(¥.)| > 3 and | </ (4,)[i]| > 2 for every i < p. Then,

K(x) <K({¢(%))) +0(1) < K(x) + O(log,(p)) < K(x) + O(log,(log, ((x)))) ,
where x is the respective node-aligned characteristic string and p is the order of 4.

Proof. Since the multidimensional space is uniform (i.e., when 7 (¥;)[i] = <7 (%;)]j] holds
for every i,j < p), there is a simple algorithm that always compute the integer value
| (%.)]i])|, for any i < p, when X!, |/ (%,)[i]| and p are given as inputs. In addition, in
this case, (17(¥.)) can be computably built if |«7(%;)[i]|, for any i < p, and the value of
p are given as inputs. Moreover, by solving a simple quadratic equation with just one
possible positive integer solution, there also is a simple algorithm that always returns the
integer value szl |7 (¢4:)[i]| when I(x) = |E;(%)] is given as input. Note here that, since
|V(4:)| >3 > 2, then

2
13) = [Ee)] = LTI > g 21, @)

From the self-delimiting (or prefix-free) property for K(-), we clearly have that I(x) is
always computable given x* as input. We have from Lemmas 2 and 3 that (£ (%)) can
always be computed if x* and (7(%;)) are given as inputs. Thus, by combining all of these
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algorithms, we will have that (£ (%)) can be computed given x* and p as inputs. Hence,
from the minimality of K(-), we will have that

K({(¢(%))) < K(x) + O(log,(p)) (26)

holds. Since
V(4e)| = |7 ()17,

and |.«7(%;)[1]| > 2, then from Equation 25 we also have that

p < log,([V(#)]) < log,(I(x)) - (27)

Therefore, from Equation 26,

K((¢(%))) < K(x) + O(log,(p)) < K(x) + O(log, (log, (I(x))))

holds. Finally, to prove that K(x) < K((£(%;))) + O(1), just note that one can always
computably extract x from (£(%.)). O

An interesting future research is to investigate whether one can construct an worst-
case example of node-aligned multidimensional network with uniform multidimensional
space that actually displays a distortion of the tight order of log, (p). In any event, Lemma
14 already demonstrates an upper bound for the worst-case distortion increasing rate with
respect to the value of p (i.e., with the number of extra node dimensions). In particular,
as mentioned before, this upper bound is given by only a logarithmic term of p. On the
other hand, although we saw in Lemma 14 that uniform multidimensional spaces can only
display very small distortions in the node-aligned case, we show below that worst-case
distortions that grow exponentially with p are still possible in the node-unaligned case:

Theorem 15. There are encodable node-unaligned simple MAGS %y given Tya(%yac) with
| (Guuac) [i]| > 2 for every i < p and with arbitrarily large uniform multidimensional spaces such
that

K(<Tua(guac)>) ‘|‘O(1) > K(<<g)uu(guac)> |x/) > K(<Tua(guac)>) - 0(10g2 (K(<Tuu(guac)>)))

with
log, (K(<£)uu(guac)>)> =Q(p)

and

K(¥') = o(log2 (K((éim(%ac)))D ,
where x' is the respective node-unaligned characteristic string and p is the order of Gac.

Proof. The underlying idea of this proof is similar to the proof of Theorem 13, but with the
fundamental distinction in the set of all composite vertices X _ [ (%) [i]| = |V(Duac)|,

so that now |V(%uac)| = |97 (%uac)[1]|” holds instead of [V(%ac)| = 2(5+0(P) et %10 be

any node-unaligned simple MAG such that, for every 1 < i < p, one has that & (%) [i] =
X =1{1,...,]X|} and, for every 1 < j < |V(%,4)|, one has that

mj =1 <= the j-thdigitof wp is 1
mj =0 <= the j-th digitof w, is 0,

where &,a(%uac) € Euge(Guac), X C N, p € Nand wy, x’ € {0,1}* are arbitrary. As in
the proof of Theorem 13, let w, be an arbitrarily long finite initial segment y [;(,,) of a
1-random real number y. From Lemma 9, we have that ¢, is encodable given ;s (% ac ).
This way, Equations 15, 18 hold in the same way as in Theorem 13. However, now Equation

22 assumes a distinct and more precise form: since
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|V(gmw)| = |X‘p = |$27(%ua6)[1”p ’

and | X| = |97 (uac)[i]| > 2, then we will have that

p < plogy(|X]) = log, (|V(“uac)|) - (28)
Note that p < [V(%yac)| and | X| < [V(%uac)|. Additionally, from the Borel normality of w,,
we know that V(@

Via )| = 2 4 o9 (Gy00)])
Thus, there will be a program of size
O(log, (|X])) + O(log,(p)) + O(log, (o(|X|7))) +O(1) <
O(log, (| X])) + O(logy(p)) + O(p log, (| X])) < (29)

— —

O(p log,(|X1)) + O(log,(p))

that returns the integer value |Eyqc(%uac)| as output, where |Eyqc(%uac)| = [(x'). This way,
one can choose a node-unaligned characteristic string x’ such that

K(x’

z(x')) =0(1) (30)

holds and that there are some composite vertices in |V,5(%uac)| that are not connected to
any other composite vertex in [V (%uac)|, where [(x") = |Eyac(%uac) |- Hereafter, the rest
of the proof follows analogously to the proof of Theorem 13. [

The proofs of Corollaries 16 and 17 follows from Theorems 8, 13 and 15 and Lemma 4
in a totally analogous manner as Corollaries 6 and 7 follows from Theorem 1 and 5 and
Lemma 4. Thus, we choose to leave the following proofs up to the reader.

Corollary 16. There are an infinite family F' of node-unaligned simple MAGs, which may have
either uniform or non-uniform multidimensional spaces, and an infinite set X' of the correspondent
node-unaligned characteristic strings such that, for every constant ¢ € N, there are 9,,c € F' and
x" € X', where x' is the node-unaligned characteristic string of %yqc and

O (10g, (K({6ua(%uac)))) ) > ¢+ K('). (31)

Corollary 17. There are an infinite family F| of node-unaligned simple MAGs, which may have
either uniform or non-uniform multidimensional spaces, and an infinite family Fj of classical
graphs, where every classical graph in F} is MAG-graph-isomorphic to at least one MAG in Fj,
such that, for every constant ¢ € N, there are G € Fl’ and a G%m S Fé that is unaligning
MAG-graph-isomorphic to 4,c, where

o(log2 (K((é”ua(%uc»))) >c+ K(<E(G(¢)>)

Besides showing that node-unaligned multidimensional networks can display an
exponentially larger algorithmic information distortions with respect to its isomorphic
monoplex network, Theorems 13 and 15 together with Corollary 17 show that these
distorted values of algorithmic information content grows at least exponentially with the
order p (i.e., with number of extra node dimensions). In the same way as mentioned at
the end of Section 3.2, future research is also needed for establishing the upper bound for
distorted values of algorithmic information content with respect to p.

Finally, we can combine our results in order to achieve our last theorem, which
summarizes the present article:

Theorem 18.
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@ There are an infinite family F{' of simple MAGs and an infinite family F} of classical
graphs, where every classical graph in F is MAG-graph-isomorphic to at least one MAG
in F{', such that:

(@)  if the simple MAGs in F' are node-aligned and have a non-uniform multi-
dimensional space, then for every constant ¢ € N, there are ¢, € F|' and a
Gy, € F}/ that is (aligning) MAG-graph-isomorphic to ¢, where

0(log, (K((6(4))))) > ¢ +K((E(Gy,))).

and this exponential distortion grows at least linearly with the order p of the
MAG %, i.e.,
K(€(%))) 2 p—0(1).

(b)  if the simple MAGs in F|' are node-unaligned and have either non-uniform
or uniform multidimensional space, then for every constant ¢ € N, there are
Yuae € Fy and a G € Fy that is (unaligning) MAG-graph-isomorphic to
Y100, Where

O log, (K((6ua(%uc)))) ) > e+ K((E(G4, )

and this exponential distortion grows at least exponentially with the order p of
the MAG 9,5, i.e.,

log, (K((&a(%ac)))) =Q(p).

(I1) Let F{' be an arbitrary infinite family of node-aligned classical MAGs with uniform
multidimensional spaces. Let F} be an arbitrary infinite family of classical graphs such
that every classical graph in F) is MAG-graph-isomorphic to at least one MAG in F{'
and that both these graph and MAG share the same characteristic string. Then, for every
9, € F/' and Gy, € F} that is (aligning) MAG-graph-isomorphic to %, one has that

K((E(Gg,))) < K((6(%))) +O(1) <K((E(Gg,))) + O(log,(p))

and, therefore, any distortion can only grow up to a logarithmic order of p.

Proof. The proof of Theorem 18.(I)(a) follows directly from Theorem 5 and Corollary 7,
which were previously presented in [1]. The proof of Theorem 18.(I)(b) follows directly
from Theorems 13 or 15 together with Corollary 17. The proof of Theorem 18.(II) follows
directly from Lemma 14 and Lemma 4 by fixing a computable ordering for both the sets
Ec(%) and E.(Gg,). O

6. Conclusions

This article presented mathematical results on network complexity, irreducible infor-
mation content, and lossless compressibility analysis of node-aligned or node-unaligned
multidimensional networks. We studied the limitations for algorithmic information theory
(AIT) applied to monoplex networks or graphs to be imported into multidimensional
networks, in particular in the case the number of extra node dimensions (i.e., aspects) in
these networks is sufficiently large. Our results demonstrate the existence of worst-case
algorithmic information distortions when the algorithmic information content of a multidi-
mensional network is compared with the algorithmic information content of its isomorphic
monoplex network. More specifically, our proofs show that these distortions exist when a
logarithmically compressible network topology of a monoplex network is embedded into a
high-algorithmic-complexity multidimensional space.
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Previous results in [1] have shown that node-aligned multidimensional networks with
non-uniform multidimensional spaces can display an exponentially larger algorithmic
complexity than the algorithmic complexity of its isomorphic monoplex network. In
addition, [1] shows that these distorted values of algorithmic information content grows at
least linearly with number of extra node dimensions.

When dealing with either uniform or non-uniform multidimensional spaces, we show
in this article that node-unaligned multidimensional networks can also display exponential
algorithmic information distortions with respect to the algorithmic information content
of the isomorphic monoplex network. Unlike the case studied in [1], these worst-case
distortions in the node-unaligned case are shown to grow at least exponentially with the
number of extra node dimensions. Thus, the node-unaligned case is more impactful than
the previous node-aligned one precisely because exponential distortions may take place
even with uniform multidimensional spaces and, furthermore, the distortions may grow
much faster as the number of extra node dimensions increases.

On the other hand, we demonstrated that node-aligned multidimensional networks
with uniform multidimensional spaces are limited to only display algorithmic information
distortions that grow up to a logarithmic order of the number of extra node dimensions.
As one might expect, the node alignment in conjunction with the uniformity of the mul-
tidimensional space guarantee that, in any event, the algorithmic information content of
the multidimensional network and the algorithmic information content of its isomorphic
monoplex network are tightly associated, except maybe for a logarithmic factor of the
number of extra node dimensions.

The results in this article show that evaluations of the algorithmic information content
of networks may be extremely sensitive to whether or not one is taking into account not
only the total number of node dimensions, but also the respective sizes of each node
dimension, and the ordering that they appear in the mathematical representation. Due
to the need of additional irreducible information in order to compute the shape of the
high-algorithmic-complexity multidimensional space, the present article shows that iso-
morphisms between finite multidimensional networks and finite monoplex networks do
not preserve algorithmic information in general, so that the irreducible information content
of a multidimensional network may be highly dependent on the choice of its encoded
isomorphic copy. In order to avoid distortions in the general case when studying network
complexity or lossless compression of multidimensional networks, it also highlights the
importance of embedding the information necessary to determine the multidimensional
space itself into the encoding of the multidimensional network. To such an end, network
representation methods that take into account the algorithmic complexity of the data struc-
ture itself (unlike adjacency matrices, tensors, or characteristic strings) are required for
importing algorithmic-information-based methods into the multidimensional case. In this
way, given the relevance of algorithmic information theory in the challenge of causality
discovery in network modeling, network summarization, network entropy, and compress-
ibility analysis of networks, we believe this paper makes a fundamental contribution to
the study of the complexity of multidimensional networks that have a large number of
node dimensions, which in turn also imposes a need for being accompanied by more
sophisticated algorithmic complexity approximating methods than those for monoplex
networks or graphs.
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