Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Evaluation of TiO2 Based Photocatalytic Treatment of Odor and Gaseous Emissions From Swine Manure With UV-A and UV-C

Version 1 : Received: 24 February 2021 / Approved: 2 March 2021 / Online: 2 March 2021 (09:08:29 CET)

A peer-reviewed article of this Preprint also exists.

Lee, M.; Koziel, J.A.; Murphy, W.; Jenks, W.S.; Chen, B.; Li, P.; Banik, C. Evaluation of TiO2 Based Photocatalytic Treatment of Odor and Gaseous Emissions from Swine Manure with UV-A and UV-C. Animals 2021, 11, 1289. Lee, M.; Koziel, J.A.; Murphy, W.; Jenks, W.S.; Chen, B.; Li, P.; Banik, C. Evaluation of TiO2 Based Photocatalytic Treatment of Odor and Gaseous Emissions from Swine Manure with UV-A and UV-C. Animals 2021, 11, 1289.

Journal reference: Animals 2021, 11, 1289
DOI: 10.3390/ani11051289

Abstract

It is essential to mitigate gaseous emissions that result from poultry and livestock production to increase industry sustainability. Odorous volatile organic compounds (VOCs), ammonia (NH3), hydrogen sulfide (H2S), and greenhouse gases (GHGs) have detrimental effects on the quality of life in rural communities, the environment, and climate. This study's objective was to evaluate the photocatalytic UV treatment of gaseous emissions of odor, odorous VOCs, NH3, and other gases (GHGs, O3 – sometimes considered as by-products of UV treatment) from stored swine manure on a pilot-scale. The manure emissions were treated in fast-moving air using a mobile lab equipped with UV-A and UV-C lights and TiO2-based photocatalyst. Treated gas airflow (0.25 to 0.76 m3/s) simulates output from a small ventilation fan in a barn. Through controlling the light intensity and airflow, UV dose was tested for techno-economic analyses. The treatment effectiveness depended on the UV dose and wavelength. Under UV-A (367 nm) photocatalysis, the percent reduction of targeted gases was up to i) 63% of odor, ii) 51%, 51%, 53%, 67%, and 32% of acetic acid, propanoic acid, butanoic acid, p-cresol, and indole, respectively, iii) 14% of nitrous oxide (N2O), iv) 100% of O3, and 26% generation of CO2. Under UV-C (185+254 nm) photocatalysis, the percent reductions of target gases were up to i) 54% and 47% for p-cresol and indole, respectively, ii) 25% of N2O, iii) 71% of CH4, and 46% & 139% generation of CO2 & O3, respectively. The results proved that the UV technology was sufficiently effective in treating odorous gases, and the mobile lab was ready for farm-scale trials. The UV technology can be considered for the scaled-up treatment of emissions and air quality improvement inside livestock barns.

Keywords

air pollution control; air quality; volatile organic compounds; odor; environmental technology; advanced oxidation; UV

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.