Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Deep Learning versus Spectral Techniques for Frequency Estimation of Single-Tones: Reduced Complexity for SDR and IoT Sensor Communications

Version 1 : Received: 25 February 2021 / Approved: 26 February 2021 / Online: 26 February 2021 (15:22:14 CET)

A peer-reviewed article of this Preprint also exists.

Almayyali, H.R.; Hussain, Z.M. Deep Learning versus Spectral Techniques for Frequency Estimation of Single Tones: Reduced Complexity for Software-Defined Radio and IoT Sensor Communications. Sensors 2021, 21, 2729. Almayyali, H.R.; Hussain, Z.M. Deep Learning versus Spectral Techniques for Frequency Estimation of Single Tones: Reduced Complexity for Software-Defined Radio and IoT Sensor Communications. Sensors 2021, 21, 2729.

Abstract

Despite the increasing role of machine learning in various fields, very few works considered artificial intelligence for frequency estimation (FE). This work presents a comprehensive analysis of deep-learning (DL) approach for frequency estimation of single-tones. It is shown that DL network with two layers having a few nodes can estimate frequency more accurately than well-known classical techniques. The study is comprehensive, filling gaps of existing works, where it analyzes error under different signal-to-noise ratios, numbers of nodes, and numbers of input samples; also, under missing SNR information. It is found that DL-based FE is not significantly affected by SNR bias or number of nodes. DL-based approach can work properly using minimal number of input nodes N at which classical methods fail. It is possible for DL to use as little as two layers with two or three nodes each, with complexity of O{N} versus O{Nlog2 (N)} for DFT-based FE, noting that less N is required for DL. Hence, DL can significantly reduce FE complexity, memory, cost, and power consumption, making DL-based FE attractive for resource-limited systems like some IoT sensor applications. Also, reduced complexity opens the door for hardware-efficient implementation using short word-length (SWL) or time-efficient software-defined radio (SDR) communications.

Keywords

Frequency Estimation; Deep Learning (DL); Sensors; Internet of Things (IoT); Short Word-Length (SWL); Software-Defined Radio (SDR); Parallel-Computing FFT; Low-Power; Low-Cost; Biomedical Sensors.

Subject

Computer Science and Mathematics, Algebra and Number Theory

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.