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Abstract: Despite the increasing role of machine learning in various fields, very few works consid-

ered artificial intelligence for frequency estimation (FE). This work presents a comprehensive anal-

ysis of deep-learning (DL) approach for frequency estimation of single-tones. It is shown that DL 

network with two layers having a few nodes can estimate frequency more accurately than well-

known classical techniques. The study is comprehensive, filling gaps of existing works, where it 

analyzes error under different signal-to-noise ratios, numbers of nodes, and numbers of input sam-

ples; also, under missing SNR information. It is found that DL-based FE is not significantly affected 

by SNR bias or number of nodes. DL-based approach can work properly using minimal number of 

input nodes N at which classical methods fail. It is possible for DL to use as little as two layers with 

two or three nodes each, with complexity of O{N} versus O{Nlog2 (N)} for DFT-based FE, noting 

that less N is required for DL. Hence, DL can significantly reduce FE complexity, memory, cost, and 

power consumption, making DL-based FE attractive for resource-limited systems like some IoT sen-

sor applications. Also, reduced complexity opens the door for hardware-efficient implementation 

using short word-length (SWL) or time-efficient software-defined radio (SDR) communications. 

Keywords: frequency estimation; deep learning (DL); sensors; internet of things (IoT); short word-

length (SWL); software-defined radio (SDR); parallel-computing FFT; low-power; low-cost; biomed-

ical sensors. 

 

1. Introduction 

Estimating the frequency of a single-tone sinusoidal wave under noise has been a 

fundamental problem in signal processing for communications, and its effect extends to 

biomedical and power engineering [1,2]. Several classical methods have been proposed to 

estimate the frequency of a single-tone sinusoid, mostly based on Fourier analysis [3]. 

Correlation methods can be very attractive for hardware implementation as well as for 

IoT, sensors, and software-defined ratio (SDR) as they are much more computationally 

efficient than spectral techniques; however, those techniques are far less accurate than 

Fourier-based techniques, especially under low values of signal-to-noise ratio (SNR) [4]. 

Phase-locked loops (PLLs) are widely used in communication systems to handle this prob-

lem; however, PLLs can be slower that spectral or correlative techniques as they need time 

for locking [5]. More samples are needed in digital PLLs (DPLLs) if more realizations are 

considered for better results, especially under low SNR where noise disturbs the locking 

process significantly. 

Recently machine learning has been emerging as a powerful tool for various tasks in 

many fields including communications and signal processing [6-8]. Despite the increased 

attention to machine learning, very little works considered their application to handle the 

problem of frequency estimation. In [9], an approach based on deep learning for single-

tone frequency estimation under noise has been proposed. Unlike Fourier-based, PLL, or 
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correlative techniques, DL-based approach requires the prior knowledge of SNR; how-

ever, SNR estimation can be in error under varying noise conditions, therefore many stud-

ies, including [9], assume that SNR is constant during the period of frequency estimation.  

In this work we will further investigate the performance DL for frequency estimation 

under insufficient SNR information. On the other hand, the effect of the number of nodes 

has also been studied, where it is found that no significant change in performance is ob-

tained after increasing the number of nodes in hidden layers. The contribution of this 

work involves the following directions: 

• Comparing the performance of DL-based approach with classical techniques.  

• Investigating the system performance in case of unavailable SNR information. 

• Investigating the system performance under various SNR’s. 

• Investigating the effect of changing the number of nodes in the hidden layers of 

the network. 

• Investigating the effect of the input signal length (duration) on the performance 

of both classical and DL-based methods. This factor has a significant impact on 

the overall performance and complexity. 

• Investigating the effect of different realizations during the application phase (no 

only during the training phase). 

• Investigating the impact of DL-based FE on IoT, sensors, sensor networks, and 

software-defined radio (SDR). 

This paper is organized as follows: Section 2 presents related works; Section 3 pre-

sents the signal model and the problem definition; Section 4 reviews the most-effective 

classical techniques; while Section 5 addresses the yet-unhandled issues of the DL-ap-

proach and presents the results in a comparative study that reveals the power of DL ver-

sus classical frequency estimation techniques. 

2. Motivation and Related Work 

The problem of frequency estimation (FE) has often been handled using the classical 

Fourier and correlative techniques. However, some recent works have handled this prob-

lem by neural networks and deep learning. Good accuracy has been obtained, hence, the 

use of DL for frequency estimation is promising. Reference [9] designed a three-layer neu-

ral network to estimate the frequency of a sinusoid contaminated by white noise process 

at a signal-to-noise ratio (SNR) of 25 dB, where the trained model can estimate frequency 

of any previously-unseen noisy sinusoid in short time. However, this work didn’t address 

some important issues including comparisons with classical techniques, the system per-

formance under wrong SNR estimation, the system performance under various values of 

SNR, and the effect of the number of nodes. 

Reference [10] presents an approach based on deep neural networks to estimate the 

fundamental frequency (F0) which is an essential acoustical feature to find the audible 

pitch level. This problem has been classically dealt with using time-domain or correlative 

methods, however, the work in [5] applied a different direction via deep learning, where 

error was reduced as compared with classical techniques. 

Reference [11] presented an approach for estimating the frequency of linear fre-

quency modulation (LFM) signals, a topic that has applications in radar and communica-

tion engineering. The approach utilized convolutional neural network (CNN), while this 

problem has been traditionally handled using time-frequency analysis [12], however, this 

approach requires significant computational cost as it involves two-dimensional trans-

forms. 

3. Problem Statement 

The single-tone sinusoidal generic model is given by: 

𝑠(𝑡) =  𝑎(𝑡)cos(2𝜋𝑓𝑜𝑡 + 𝜃𝑜),                         (1) 
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where 𝑎(𝑡) is the amplitude, normally has less frequency content than the sinusoidal fre-

quency 𝑓𝑜 (i.e., slowly-varying); and 𝜃𝑜 is the initial phase. As a carrier for information 

signals in communication systems via modulation, the sinusoidal carrier has normally a 

constant amplitude, while the receiving device can apply amplitude estimation and a con-

stant-gain multiplier to restore the original amplitude. Therefore, we consider here the 

sinusoidal model: 

𝑠(𝑡) = 𝐴 cos(2𝜋𝑓𝑜𝑡 + 𝜃𝑜),                             (2) 

with constant amplitude 𝐴. 

The signal in Equation (2) is transmitted for a short time at the start of any commu-

nication between two terminals to allow the receiver to estimate the carrier frequency. 

However, such single-tone signal can undergo frequency change due to Doppler effect. 

Even minor change in carrier can cause demodulation problems. Performance of OFDM 

systems can deteriorate for improper carrier estimation [1]. Hence, accurate frequency es-

timation of the incoming carrier is very important for correct demodulation at the receiver. 

However, communication channels add noise to transmitted signals, making frequency 

estimation more challenging task. Hence, the actual carrier model used in frequency esti-

mation will be as follows: 

𝑠(𝑡) = 𝐴 cos(2𝜋𝑓𝑜𝑡 + 𝜃𝑜) + 𝜂(𝑡),                           (3) 

where 𝜂(𝑡) represents the noise process. In most communication systems, noise is mod-

elled as Gaussian (normal) process with zero-mean and variance that equals the noise 

power, 𝜎2, and the process is normally referred to as 𝒩(0, 𝜎2).   

The signal-to-noise ratio (SNR) is defined as follows: 

SNR = 𝑟 =
signal power

noise power
=

𝐴2/2

𝜎2 ,                          (4)  

and it is expressed usually in decibels: 

SNRdB = 𝑟dB = 10 log10(𝑟),                          (5)  

which is more convenient to handle large and small values logarithmically. 

This work handles the problem of estimating the frequency 𝑓𝑜  of the single-tone 

model in Equation (3) under Gaussian noise 𝜂(𝑡). Our approach is to use a deep-learning 

(DL) neural network with multiple layers in this process, following recent works that con-

firmed the high accuracy of this approach [9-11]. Despite the pioneering role of these 

works, they haven’t addressed many fundamental issues in DL frequency estimation. We 

will focus on clarifying these issues as follows: 

1. Performance of the DL-approach is compared with the performance of the still-

active classical techniques that are based on Fourier analysis.  

2. In many situations SNR estimation can be inaccurate or unavailable. Hence, the 

system performance is investigated in case of unavailable SNR information. 

3. The DL-approach is SNR-dependent, hence an investigation of the system per-

formance under various SNR’s is presented. 

4. It is expected that the more nodes in the DL approach the better is the accuracy 

of estimation. Hence, this work investigated the effect of changing the number 

of nodes in the hidden layers of the network. 

5. The number of input samples (signal length or duration) has a significant im-

pact on the complexity and the performance of classical and DL-based methods. 

This point has been fully investigated in this work. 

6. The effect of different realizations while training has been handled in the liter-

ature of DL-based approaches, as it is a necessary step in the training process. 

However, the possibility of different realizations in the working environment 

(application phase) has not been handled previously. In this work we discuss 

the effect of different realizations during the application phase. 

7. The reduced complexity introduced by DL-based FE in addition to avoiding 

complex-valued arithmetic will make FE easier and cheaper for IoT communi-

cations, sensors, sensor networks, and software-defined radio (SDR). This work 

presents discussions on such possibilities. 
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The next section presents an overview of the main well-known approaches in classi-

cal FE for single-tone signals. 

4. A Brief Overview of Classical FE for Single-Tones 

Literature surveys of classical frequency estimation are presented in [2], [13] and [14]. 

In [1], an iterative approach for single-tone frequency estimation is presented; however, 

despite their benefits in accuracy, such approaches can be computationally expensive or 

complex. In [15,16,17] and the References therein, good DFT-interpolators have been pre-

sented, however, despite some accuracy gains, they are computationally more expensive 

that earlier methods in the literature. Reduced complexity is a property that can be very 

useful for some resource-limited systems like wireless sensor networks [18]. Complexity-

accuracy-speed tradeoff is the selection criterion in this work. Here, a brief overview of 

the most accurate, computationally-efficient classical approaches is presented. All accu-

rate classical FE methods are based on using the Discrete Fourier Transform (DFT) of the 

signal: 

𝑆(𝑘) =  ∑ 𝑠(𝑛)  𝑒−𝑗2𝜋𝑘𝑛/𝑁𝑁−1
𝑛=0                               (6) 

where 𝑁 is the number of input samples. Various methods have been designed for FE 

based on interpolating the DFT of the sinusoid. The most accurate and computationally-

efficient methods under additive Gaussian noise are as follows. 

4.1. The Maximum of DFT Estimator 

This method is based on the location (index) of the maximum of the absolute of the 

DFT, given by: 

𝐼𝑚 = arg{max𝑘[|𝑆(𝑘)|]},                               (7) 

since the sinusoid gives a delta spectrum. The estimated frequency is given by: 

𝐹𝑜 =
𝐼𝑚∙𝑓𝑠

𝑁
,                                     (8)  

where 𝑓𝑠 is the sampling frequency.  

Error of estimation at SNR = r (dB) is defined in this paper as: 

  𝑒(𝑟) =
|𝐹𝑜−𝑓𝑜|

𝑓𝑜
,                                   (9) 

and the above definition of error is used to evaluate the performance of DL approach ver-

sus existing methods. Another performance criterion is the computational complexity of 

the method. 

4.2. The Quadratic Interpolator 

This approach designs a quadratic interpolation for the Fourier Transform (DFT) us-

ing three points near the index of the maximum of |DFT|, i.e., the following points in the 

DFT-domain: 

(𝐼𝑚 − 1, 𝑆1 = |𝑆𝐼𝑚−1|), (𝐼𝑚, 𝑆2 = |𝑆𝐼𝑚
|), (𝐼𝑚 + 1, 𝑆3 = |𝑆𝐼𝑚+1|), 

where 𝐼𝑚 is given in Equation (7). The estimated frequency will be given by: 

𝐹𝑜 =
𝐼𝑜∙𝑓𝑠

𝑁
,                                                                  (10)  

where: 𝐼𝑜 = 𝐼𝑚 + 𝛿;   𝛿 = (𝑆3 − 𝑆1) [2 ∗ (2 ∗ 𝑆2 − 𝑆1 − 𝑆3)⁄ ]. 

4.3. The Barycentric Estimator 

This estimator is similar to the Quadratic Estimator, with the estimated frequency 

given by: 

𝐹𝑜 =
𝐼𝑏∙𝑓𝑠

𝑁
,                                    (11)  

where: 𝐼𝑏 = 𝐼𝑚 + 𝛼;   𝛼 = (𝑆3 − 𝑆1) [𝑆1 + 𝑆2 + 𝑆3⁄ ]. 

During this work, the Barycentric Estimator proved to give the best results in terms 

of error among the selected classical techniques. 

The next section presents the structure and training details of the deep learning net-

work that will be adopted for FE of single-tone signals. 
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5. Deep Learning for Single-Tone FE: Network Structure and Training 

In this section the structure of the DL-approach for frequency estimation of single-

tones is analyzed and justified. Please note that in DL-based approach, complexity only 

exists during the training phase, not in the actual network structure. The significant re-

duction in complexity can make DL-approach for FE suitable for IoT communications in-

volving wireless sensor networks (WSNs).  

5.1. DL Network Structure 

A deep neural network with two hidden layers is shown in Figure 1, where the ar-

rows represent multiplication of relevant items by specific weights and adding biases, us-

ing the MATLAB tansig (or tanh) function as the pointwise activation function in hidden 

layers as follows: 

𝚽{𝒁𝑁×1} = 𝚽{[𝑧𝑖|𝑖 = 1: 𝑁]} = [𝜙(𝑧𝑖)]𝑁×1 = [
2

1+𝑒−2𝑧𝑖
− 1]

𝑁×1
,           (12) 

 

Figure 1. Structure of the two-layer network used for DL-based FE. 

The reason for using tanh activation for hidden layers is to prevent results from ex-

panding in magnitude and normalizing them in the range [-1,1]; also, both positive and 

negative values are needed for proper adjustment of the network, unlike the case in the 

output layer, where a single output (a decision) should be obtained using the positive 

linear activation function (ReLU) to give a value proportional to the input frequency as 

follows: 

ϑ(𝑥) = max(0, 𝑥) = {
𝑥 ; 𝑥 ≥ 0
0 ; 𝑥 < 0

},                         (13) 

where ReLU is used because the actual value of the frequency is needed, knowing that the 

frequency is always positive. The operation of the 2-layer network in Figure 1 can be ex-

pressed as follows: 
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𝑓 = ϑ[𝑽1×𝐾 . 𝚿{𝑯𝐾×𝐽. 𝚽(𝐖𝐽×𝑁 ∙ 𝐗𝑁×1 + 𝐛𝐽×1) + 𝛃𝐾×1} + 𝒷1×1],        (14)  

where 𝑿 is the input vector, 𝑾, 𝑯, and 𝑽 are the weight matrices of the first hidden, 

second hidden and output layers; 𝑁, 𝐽, 𝐾, are the numbers of nodes of the input, first 

hidden, and second hidden and layers; while 𝐛, 𝛃, 𝒷 are the respective biases of the first 

hidden, second hidden and output layers. The number of nodes in the output layer is 𝐼 =

1, as a scalar is needed to estimate the input frequency. Bold-type is used for matrices and 

vector functions, while plain-text symbols for scalar functions and variables. The activa-

tion functions handle the relevant vectors point-wise as shown in Figure 1, while the out-

put variable 𝑓 is a scalar that should represent the input frequency. The minimum num-

ber of layers L for successful extraction of the input features is 𝐿 = 2. Larger 𝐿 may im-

prove the performance a bit, however, increases the complexity. 

5.1. Training Data 

The training data are samples that are simulated using the model in Equation (3) on 

MATLAB (under Academic License 40635944). The number and magnitude of these sam-

ples are dependent on the signal duration (𝑇), sampling frequency 𝑓𝑠, and the signal-to-

noise ratio (SNR). Data samples for each 𝑇 and SNR have been divided into three groups: 

70% for training, 15% for testing, and 15% for validation. The training function of the DL-

network is chosen as MATLAB trainscg function, which updates weight and bias values 

according to the scaled conjugate gradient method, with learning rate of 𝐿𝑟 = 0.1 and 

number of epochs 𝑝 =  100.  

As changes in carrier frequency are expected to be small (mostly due to Doppler Ef-

fect), a small frequency range of low frequencies [23-25] Hz is considered in this experi-

ment, which is suitable for many applications in bio-sensor communications and IoT. 

Higher ranges are possible, but require more training samples 𝑁, hence, more complex 

network; for example, handling a maximum frequency of 100kHz may require 𝑁 = 2000 

input nodes [9]. The selected frequency range has been divided with a frequency step of 

𝑑𝑓 = δ/𝜇, with δ = 25 − 23 = 2 and 𝜇 = 40 in the simulations. Of course, more accu-

racy can be obtained with larger 𝜇, however, this can be at the expense of more nodes in 

the network. Note that this frequency step is time-independent, hence, it is a design prob-

lem, unlike the frequency step Δ𝑓 = 1/𝑇 in DFT-based techniques, which is time-depend-

ent and follows the Heisenberg Uncertainty Principle in the time-frequency domain [19].  

For each incremental frequency {𝑓𝑖 = 23 + 𝑖 ∙ 𝑑𝑓|𝑖 = 0: 𝜇} in the selected frequency 

range, a number of realizations 𝑅 = 100 is generated so that the training vector is: 

𝑋𝑡 = [𝑆0 𝑆2  ⋯ 𝑆𝜇]
𝑁×(𝜇+1)𝑅

;   𝑆𝑖 = [𝑠𝑖1 𝑠𝑖2  ⋯ 𝑠𝑖𝑅]𝑁×𝑅                 (15)  

with labels: 

𝐿𝑡 = [𝐿0 𝐿2  ⋯ 𝐿𝜇]
1×(𝜇+1)𝑅

;   𝐿𝑖 = 𝑖 ∗ [1 1 ⋯  1]1×𝑅                  (16)  

where 𝑠𝑖𝑘 is the 𝑁 × 1  column that represents the 𝑘th realization of Equation (3) with 

a frequency 𝑓𝑖 under the same SNR. Hence, there is a total of 𝜇 + 1 classes. A larger num-

ber of realizations 𝑅 during the training phase implies better training. 

6. Results: Deep Learning vs. Classical Single-Tone FE 

In this section we analyze the performance of the DL-approach for frequency estima-

tion of single-tones, in comparison with computationally-efficient classical techniques. 

For each SNR, a different network is trained to recognize the frequencies in the spec-

ified range. As SNR may change in communication systems, this result may imply a com-

plicated set of DL-based estimators is necessary for a proper functioning. It will shortly be 

shown that this complexity is not necessary. The number of signal samples 𝑁 used in the 

design of the estimation system has a significant impact on the performance of FE, both 

in DFT-based and DL-based techniques. Hence, a larger signal duration 𝑇 (allowed by 

the estimation system design) will give larger 𝑁 = 𝑇/𝑇𝑠, hence better estimation. Still bet-

ter results can be obtained via more realizations. During the training phase, a larger num-

ber of realizations r implies better training. In the testing phase (actual working 
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environment), obtaining a number 𝜌 of different realizations is possible via dividing the 

input samples into sets of specific length that equals the signal length 𝑁 which was se-

lected during the training part (i.e., the number of input nodes to the trained DL network). 

Hence, for a better frequency estimation, the transmitter should initially send the carrier 

single-tone for sufficient sending-duration 𝑃 that includes a multiple 𝜌 of the training-

duration 𝑇 (whose sample length is 𝑁 = 𝑇/𝑇𝑠), i.e., 𝑃 = 𝜌𝑇 or 𝜌𝑁 = 𝑃/𝑇𝑠. The final fre-

quency estimate will be the average of estimates over 𝜌 realizations. 

6.1. Performance under Different Input Lengths 

First, we consider comparing the performance of the DL-based FE with the selected 

classical DFT-based techniques for different values of the training input size (𝑁). Figure 2 

shows the performance of DL method with 𝐽 = 𝐾 = 5  versus selected classical tech-

niques. The sinusoidal frequency is selected as 𝑓𝑜 = 24.41 Hz. It is shown that for small 

𝑁, the classical DFT-based approach fails to correctly estimate the input frequency. The 

number of realizations during the training phase is selected as 𝑅 = 100, while during the 

application (working) phase the number of realizations is selected as 𝜌 = 30. 

Figure 3 shows the performance of the DL-based approach versus the best of the se-

lected DFT-based approaches, the Barycentric approach, for different input lengths, while 

Figure 4 shows the performance of the DL-based approach versus the Barycentric ap-

proach with fewer nodes in the network such that 𝐽 = 𝐾 = 3. No significant difference is 

noticed as compared to Figure 3. 

 

(a) 
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(b) 

Figure 2. Performance of FE methods for different input lengths. (a) Duration 𝑇 = 2 seconds, 𝑁 = 201 input samples; (b) 

Duration 𝑇 = 0.1 Seconds, N=11.  

 

Figure 3. DL vs. Barycentric DFT-based FE for different input lengths, with 𝐽 = 𝐾 = 5. Note that DFT-based FE fails when 

𝑁 = 11, while DL-based FE gives reasonable results even at low SNR. 
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Figure 4. DL vs. Barycentric DFT-based FE for different input lengths, with 𝐽 = 𝐾 = 3. Note that DFT-based FE fails when 

𝑁 = 11, while DL-based FE gives reasonable results even at low SNR. 

6.2. Performance under Insufficient SNR Information 

SNR estimation is necessary for many purposes in communication systems, and it is 

needed for DL frequency estimation, as training is performed under a specific SNR. How-

ever, in some systems (e.g., some sensor networks), limited computational capabilities 

may not allow SNR estimation, except probably for a rough estimate. Knowing the exact 

value of SNR will not cause the performance of DL estimation to deteriorate, where only 

minor changes in the performance are noticed, as shown in Figure 5. Hence, the same 

network can be used for FE under different SNR’s. 

 

Figure 5. DL-based FE under bias from the training SNR, with 𝐽 = 𝐾 = 5. 
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The relative deviation 𝜈 of DL performance for FE, averaged over M values of SNR, 

is defined as: 

𝜈 =
1

𝑀
∑

𝑒𝑏(𝑘)

𝑒𝑜(𝑘)

𝑀
𝑘=1 ,                                    (17) 

where 𝑒𝑜(𝑘) and 𝑒𝑏(𝑘) are the average errors at the 𝑘th SNR value (dB) under normal 

operation (correct SNR Information) and biased SNR, respectively. Figure 6 shows the 

relative deviation when 𝐽 = 𝐾 = 5. Non-symmetric deviation is expected for positive and 

negative bias due to non-symmetry of the FE error performance curves (see Figures 1-4). 

 

Figure 6. Average performance deviation of DL-based FE versus SNR bias. 

6.3. Effect of Increasing Nodes at Hidden Layers 

Generally, no significant performance difference is found when increasing the num-

ber of nodes in the hidden layers as shown in Figure 7, where performance comparison 

versus barycentric method is presented using DL’s with 𝐽 = 𝐾 = 5 and 𝐽 = 𝐾 = 3. 

 

Figure 7. Average performance deviation of DL-based FE versus SNR bias. 
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6.4. Impact on IoT, Sensors, and SDR 

Reduced complexity can lead to efficient implementation of FE since DL does not 

need general-purpose digital multipliers if implemented as a multi-bit system, where 

trained weights can be implemented using look-up tables.  

On the other hand, cheap and hardware-efficient implementation using short word-

length (SWL) is possible due to reduced complexity, where complicated digital multipli-

ers are replaced by simple multiplexers.  

Another hardware gain is due to the fact that DFT techniques require the use of com-

plex-valued arithmetic, while DL systems use only real-valued arithmetic. It is well-

known that the implementation of large size DFT is a very complicated task for both hard-

ware and software designs, despite the significant efficiency provided via the latest ver-

sions of the Fast Fourier Transform (FFT) algorithm, which reduces the number of (com-

plex) multiplications from 𝒪{𝑁2} to 𝒪{𝑁log2(𝑁)} [20].  

From this work and the works in References [9-11], it can be inferred that 𝑁 is pro-

portional to the input frequency 𝑓𝑜; hence, for high frequencies the size 𝑁 can be large if 

DL is used, and much larger for classical FE if the same accuracy as DL is required, calling 

for very complicated DFT implementation in the complex-valued domain.  

Implementation of FFT via parallel computing algorithms can alleviate the time cost 

[20], however, this approach is very expensive, power-consuming, and hardware-costly, 

which may not be suitable for many systems, especially in the emerging IoT sensor appli-

cations.  

Large-scale sensor applications require tiny, low-power, low-cost implementation, 

like sensors used for healthcare monitoring, early detection and monitoring forest fires, 

natural disaster detection, and large-scale surveillance for security applications.  

Complicated, complex-valued operations not only increase the system size and com-

plexity, but also increase the power consumption, which is a crucial factor in sensors de-

ployed in WSNs, as the life-time of these sensors is limited by the irreplaceable battery life 

[18].  

For DL-based approach, the number of (real) multiplications is mostly at the input 

stage, which is 𝑁, while other node multiplications are normally as low as 6 real-valued 

multiplications (which are trivial operations, as they use look-up tables instead of digital 

multipliers); hence, the overall number of real-valued multiplications is 𝒪{𝑁}.  

Whether implemented using SWL or multibit technologies, this reduced complexity 

(versus the complicated, complex-valued classical FE techniques) makes DL-based ap-

proach the most suitable FE technology in sensors and sensor networks, which are inher-

ently liked to modern IoT applications. Similar gains are obtained if implementation is 

performed via software, where reduced complexity leads to significant time-gain, a factor 

that is attractive for software-defined radio (SDR) communications. 

6.5. A Call for Future Direction: DL in the SWL Domain 

The Authors are currently investigating the possible implementation of the DL-based 

FE using short word-length (SWL), where single-bit and ternary technologies are to be 

considered. As the training phase can be performed offline, it is expected that training 

could be accomplished using multi-bit computer simulation; however, the training data 

should be converted into the SWL format. In this case, a new factor will emerge, which is 

the quantization noise, and this can be handled by better noise-shaping via a proper se-

lection of the oversampling ratio (OSR), the quantization process, and filter design of the 

sigma-delta modulator (SDM). As adaptivity is now performed offline, this DL design is 

expected to be even less complicated than the design of adaptivity in SWL system, first 

introduced in [21] as a result of SWL research supported by the Australian Research Coun-

cil via Discovery Grant DP0557429. It is expected that successful SWL implementation of 
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DL-based FE would transform many other resource-limited IoT and sensor applications 

after the advent of DL techniques into the SWL domain. 

5. Conclusions 

This paper presented a comprehensive analysis of the performance of deep-learning 

based approach for frequency estimation of a single-tone sinusoid. The work fills the gaps 

of unhandled issues in the recently-proposed methods based on deep learning (DL). The 

paper presented analysis of the frequency estimation error under a range of signal-to-

noise ratios (SNRs). It is shown that the number of hidden layers can be as small as two, 

each with two or three nodes. The number of input samples (nodes) can be very small as 

compared to DFT-based classical methods, with much better error performance. In addi-

tion, it is shown that performance is not degraded significantly in case of wrong infor-

mation about the actual value of SNR. These results can reduce the complexity, power 

consumption, and cost of the communication system, properties that can be very useful 

for systems with limited memory and computational capabilities like wireless sensor net-

works (WSNs) that are inherently linked to current and future applications on the Internet 

of Things (IoT). Reduced complexity without using complex-valued arithmetic also makes 

the DL technology for frequency estimation suitable for software-defined radio (SDR). A 

call for exploiting this reduced complexity to introduce DL in the short word-length 

(SWL) domain has also been presented as a future direction. 
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