Preprint
Article

This version is not peer-reviewed.

Adsorption of Hexavalent Chromium by Sodium Alginate Fiber Biochar Loaded with Lanthanum

A peer-reviewed article of this preprint also exists.

Submitted:

18 February 2021

Posted:

22 February 2021

You are already at the latest version

Abstract
Lanthanum chemical compound incorporates a sensible anionic complexing ability, however lacks stability at low pH scale. Biochar fibers will benefit of their massive space and plethoric useful teams on surface to support metal chemical compound. Herein, wet spinning technology was used to load La3+ onto sodium alginate fiber, and convert La3+ into La2O3 through carbonization. The La2O3 modified biochar (La-BC) fiber was characterized by SEM, XRD and XPS, etc. The adsorption experiment proved that La-BC showed excellent adsorption capacity for chromates, and its saturation adsorption capacity was about 104.93mg/g. The information suggested that the adsorption was in step with both Langmuir and Freundlich model, followed pseudo-second-order surface assimilation mechanics, which instructed that the Cr (VI) adsorption was characterized by single-phase and polyphase adsorption, mainly chemical adsorption. Thermodynamic parameter proved that the adsorption process was spontaneous and endothermic. The mechanistic investigation revealed that the mechanism of adsorption of Cr (VI) by La-BC may include electrostatic interaction, ligand exchange or complexation. Moreover, co-existing anions and regeneration experiments proved that La-BC was recyclable and had a good prospect in the field of chrome-containing wastewater removal.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated