Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Real-Time 3D Surface Measurement in Additive Manufacturing Using Deep Learning

Version 1 : Received: 27 January 2021 / Approved: 28 January 2021 / Online: 28 January 2021 (15:01:50 CET)

How to cite: Chenang, L.; Rongxuan, W.; Kong, Z.; Suresh, B.; Chase, J.; James, F. Real-Time 3D Surface Measurement in Additive Manufacturing Using Deep Learning. Preprints 2021, 2021010587 (doi: 10.20944/preprints202101.0587.v1). Chenang, L.; Rongxuan, W.; Kong, Z.; Suresh, B.; Chase, J.; James, F. Real-Time 3D Surface Measurement in Additive Manufacturing Using Deep Learning. Preprints 2021, 2021010587 (doi: 10.20944/preprints202101.0587.v1).

Abstract

Layer-wise 3D surface morphology information is critical for the quality monitoring and control of additive manufacturing (AM) processes. However, most of the existing 3D scan technologies are either contact or time consuming, which are not capable of obtaining the 3D surface morphology data in a real-time manner during the process. Therefore, the objective of this study is to achieve real-time 3D surface data acquisition in AM, which is achieved by a supervised deep learning-based image analysis approach. The key idea of this proposed method is to capture the correlation between 2D image and 3D point cloud, and then quantify this relationship by using a deep learning algorithm, namely, convolutional neural network (CNN). To validate the effectiveness and efficiency of the proposed method, both simulation and real-world case studies were performed. The results demonstrate that this method has strong potential to be applied for real-time surface morphology measurement in AM, as well as other advanced manufacturing processes.

Subject Areas

Additive manufacturing; surface morphology; real-time measurement; deep learning

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.