Preprint
Article

This version is not peer-reviewed.

On the Solvability of Z3-Graded Novikov Algebras

Submitted:

20 January 2021

Posted:

22 January 2021

You are already at the latest version

Abstract
Let N = N0+ N1+ N2 be a Z3-graded Novikov algebra. The main goal of the paper is to prove that over a field of characteristic not equal to 3 the algebra N is solvable if N0 is solvable. We also show that a $Z_2$-graded Novikov algebra N=N0+ N2 over a field of characteristic not equal to 2 is solvable if N0 is solvable. This implies that for every n of the form n=2k3l, any Zn-graded Novikov algebra N over a field of characteristic not equal to 2,3 is solvable if N0 is solvable.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated