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Abstract. Symmetries of algebraic systems are called automorphisms. An algebra,
over a good field, admits an automorphism of finite order n if and only if it admits a
Zn-grading. Let N = N0 ⊕N1 ⊕N2 be a Z3-graded Novikov algebra. The main goal of
the paper is to prove that over a field of characteristic not equal to 3 the algebra N is
solvable if N0 is solvable. We also show that a Z2-graded Novikov algebra N = N0⊕N1

over a field of characteristic not equal to 2 is solvable if N0 is solvable. This implies
that for every n of the form n = 2k3l, any Zn-graded Novikov algebra N over a field of
characteristic not equal to 2, 3 is solvable if N0 is solvable.
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1. Introduction

One of the features of Hamiltonian operators is their connection with certain algebraic
structures [1-7]. In 1976 I.M. Gel’fand and L.A. Dikii [1] introduced formal variational
calculus and found some interesting Poisson structures when studying Hamiltonian sys-
tems related to some nonlinear partial differential equations such as the Korteweg-de Vries
equations. A little later, I.M. Gel’fand and I.Ya. Dorfman [2] found more connections be-
tween Hamiltonian operators and some algebraic structures. In 1983–85 B.A. Dubrovin,
A.A. Balanskii and S.P. Novikov [3-5] studied similar Poisson structures from another
point of view. One of the algebraic structures in [2, 5], introduced in connection with
Poisson brackets of hydrodynamic type, was called a Novikov algebra by J.M. Osborn
[8-10].

We recall some important results on the solvabilty and nilpotency of Novikov algebras.
In 1987 E.I. Zelmanov [11] proved that if N is a finite dimensional right nilpotent Novikov
algebra, then N2 is nilpotent. In 2001 V.T. Filippov [12] proved that any left-nil Novikov
algebra of bounded index over a field of characteristic zero is nilpotent. Recently I.
Shestakov and Z. Zhang [13] showed that a Novikov algebra is solvable if and only if it is
right nilpotent.

Symmetries of algebraic systems are called automorphisms. The most famous example
of symmetry in algebra is related to the action of the symmetric group Sn on a polynomial
algebra F [x1, . . . , xn] in the variables x1, . . . , xn. The algebra of invariants of this action
is a polynomial algebra generated by elementary symmetric polynomials.
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Let R be an algebra over a field F . For any automorphism φ of R the set of fixed
elements Rφ = {x ∈ R|φ(x) = x} is a subalgebra of R, and is called the subalgebra of
invariants of φ. An automorphism φ is called regular if Rφ = 0. For any group G of
automorphisms of R the subalgebra of invariants RG = {x ∈ R|φ(x) = x for all φ ∈ G}
is defined similarly.

In 1957 G. Higman [14] published a classical result on Lie algebras which says that if
a Lie algebra L has a regular automorphism φ of prime order p, then L is nilpotent. It
was also shown that the index of nilpotency h(p) of L depends only on p. An explicit
estimation of the function h(p) was found by A.I. Kostrikin and V.A. Kreknin [15] in
1963. A little later, V.A. Kreknin proved [16] that a finite dimensional Lie algebra with a
regular automorphism of an arbitrary finite order is solvable. In 2005 N. Yu. Makarenko
[17] proved that if a Lie algebra L admits an automorphism of a prime order p with a
finite-dimensional fixed subalgebra of dimension t, then L has a nilpotent ideal of finite
codimension with the index of nilpotency bounded in terms of p and the codimension
bounded in terms of t and p.

In 1973 G. Bergman and I. Isaacs [18] published a classical result on the actions of finite
groups on associative algebras. Let G be a finite group of automorphisms of an associative
algebra R and suppose that R has no |G|-torsion. If the subalgebra of invariants RG is
nilpotent, then the Bergman-Isaacs Theorem [18] states that R is also nilpotent. Since
then a very large number of papers have been devoted to the study of automorphisms of
associative rings. The central problem of these studies was to identify the properties of
rings that can be transformed from the ring of invariants to the whole ring. In 1974 V.
K. Kharchenko [19] proved if RG is a PI-ring, then R is a PI-ring under the conditions of
the Bergman-Isaacs Theorem.

The Bergman-Isaacs Theorem was partially generalized by W.S. Martindale and S.
Montgomery [20] in 1977 to the case of a finite group of Jordan automorphisms, that is,
a finite group of automorphisms of the adjoint Jordan algebra R(+).

An analogue of Kharchenko’s result for Jordan algebras was proved by A. P. Semenov
[21] in 1991. In particular, A. P. Semenov proved that if JG is a solvable algebra over a
field of characteristic zero, then so is the Jordan algebra J . His proof uses a deep result
by E.I. Zel’manov [22] which says that every Jordan nil-algebra of bounded index over a
field of characteristic zero is solvable. If a Jordan algebra J over a field of characteristic
not equal to 2, 3 admits an automorphism φ of the second order with solvable Jφ, then J
is solvable [23].

In the case of alternative algebras one cannot expect that nilpotency of the invariant
subalgebra implies the nilpotency of the whole algebra. There is an example (see [26, 27])
of a solvable non-nilpotent alternative algebra with an automorphism of order two such
that its subalgebra of invariants is nilpotent. A combination of Semenov’s result [21] and
Zhevlakov’s theorem [25] gives for an alternative algebra A over a field of characteristic
zero that the solvability of the algebra of invariants AG for a finite group G implies the
solvability of A. It is also known [24] that if A is an alternative algebra over a field of
characteristic not equal to 2 with an automorphism φ of order two, then the solvability
of the algebra of invariants Aφ implies the solvability of A. In [28] M. Goncharov proved
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that an alternative Z3- graded algebra A = A0⊕A1⊕A3 over a field of characteristic not
equal to 2, 3, 5 is solvable if A0 is solvable.

Notice that an algebra A over a field containing all nth roots of unity admits an auto-
morphism of order n if and only if A admits a Zn-grading.

In this paper we study the conditions of solvability of graded Novikov algebras from
the point of view of the Bergman-Isaacs Theorem. We prove that a Z3-graded Novikov
algebra N = N0 ⊕ N1 ⊕ N2 over a field of characteristic not equal to 3 is solvable if N0

is solvable. We also show that a Z2-graded Novikov algebra N = N0 ⊕N1 over a field of
characteristic not equal to 2 is solvable if N0 is solvable. This implies that for every n of
the form n = 2k3l that every Zn-graded Novikov algebra N over a field of characteristic
not equal to 2, 3 is solvable if N0 is solvable.

The paper is organized as follows. In Section 2 we give some preliminary facts. Section 3
is devoted to the study of Z2-graded Novikov algebras with solvable even part. In Section
4 we construct some ideals of Z3-graded Novikov algebras. The solvability of Z3-graded
Novikov algebras with solvable 0-component is proven in Section 5.

2. Preliminary calculations

An algebra N over a field F is called a Novikov algebra if it satisfies the following
identities:

(x, y, z) = (y, x, z) (left symmetry),(1)

(xy)z = (xz)y (right commutativity),(2)

where (x, y, z) = (xy)z − x(yz) is the associator of the elements x, y, z.
It follows from (2) that every Novikov algebra satisfies the identity

(xy, z, t) = (x, z, t)y.(3)

Let A be an arbitrary algebra and X, Y, Z be subsets of A. Denote by XY the linear
span of all products xy and by [X, Y ] the linear span of all commutators [x, y] = xy− yx
where x ∈ X, y ∈ Y . Also denote by (X, Y, Z) the linear span of all associators (x, y, z)
where x ∈ X, y ∈ Y, z ∈ Z.

Lemma 1. Let N be a Novikov algebra, B be its subalgebra, and M,L be B-subbimodules
of N . Then B(ML), (ML)B ⊆ ML, i.e., ML is a B-bimodule. In particular, if I, J are
ideals of N , then IJ is an ideal of N (see also [13]).

Proof. We have (ML)B ⊆ (MB)L ⊆ML by (2). By (1) we get

B(ML) ⊆ (BM)L+ (B,M,L) ⊆ML+ (M,B,L) ⊆ML+ (MB)L+M(BL) ⊆ML

since M and L are B-subbimodules of N . 2

Let Zn = Z/nZ be the additive cyclic group of order n. Let

N = N0 ⊕N1 ⊕N2 ⊕ . . .⊕Nn−1, NiNj ⊆ Ni+j, i, j ∈ Zn
be a Zn-graded Novikov algebra. Then the 0-component N0 of N is a subalgebra on N
and for convenience of notation we often denote this subalgebra by A = N0.
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Lemma 2. Let N be a Zn-graded Novikov algebra and I be an ideal of A. Assume that

(I ·Ni)Nn−i, (Ni · I)Nn−i, Nn−i(I ·Ni), Nn−i(Ni · I) ⊆ I

for some i ∈ Zn. Then

(I2 ·Ni)Nn−i, (Ni · I2)Nn−i, Nn−i(I
2 ·Ni), Nn−i(Ni · I2) ⊆ I2.

Proof. Let a, b ∈ I and x ∈ Ni, y ∈ Nn−i. We write f ≡ g if f − g ∈ I2. By Lemma 1,
I2 is an ideal of A. Then

((ab)x)y
by (2)

= ((ax)y)b ≡ 0, since (ax)y ∈ I, i.e. (I2 ·Ni)Nn−i ⊆ I2,

(x(ab))y
by (2)

= (xy)(ab) ≡ 0, since xy ∈ A, i.e. (Ni · I2)Nn−i ⊆ I2,

y((ab)x) = −(y, ab, x) + (y(ab))x
by (1) and (2)

= −(ab, y, x) + (yx)(ab) ≡ −(ab, y, x) =

−((ab)y)x+ (ab)(yx) ≡ −((ab)y)x
by (2)

= −((ay)x)b ≡ 0, i.e. Nn−i(I
2 ·Ni) ⊆ I2.

It remains to consider the product y(x(ab)). We have

y(x(ab)) = y{−(x, a, b) + (xa)b} by (1)
= −y(a, x, b) + y((xa)b)

= −y((ax)b) + y(a(xb))− (y, xa, b) + (y(xa))b
by (2)
≡ −y((ab)x)− (y, a, xb) + (ya)(xb)− (xa, y, b)

by (1) and (2)
≡ −(a, y, xb) + (y(xb))a− ((xa)y)b+ (xa)(yb)
by (2)
≡ −(ay)(xb) + a(y(xb)) + (x(yb))a ≡ −(ay)(xb)

= (ay, x, b)− ((ay)x)b ≡ (ay, x, b)
by (1)

= (x, ay, b) = (x(ay))b− x((ay)b)
by (2)
≡ −x((ab)y) ≡ 0.

Notice that in the last calculation we used twice that y((ab)x) ≡ 0, proven above. 2

The derived powers A(s) of an arbitrary algebra A are defined by induction on s as
follows: A(0) = A and A(s) = A(s−1)A(s−1) for any positive integer s ≥ 1. If A is a Novikov
algebra, then A(s) is an ideal of A for all s ≥ 0 by Lemma 1. An algebra A is called
solvable if A(s) = 0 for some s. If s is the minimal number such that A(s) = 0, then s is
called the length of solvability of A.

Corollary 1. Let N be a Zn-graded Novikov algebra. Then

(A(s) ·Ni)Nn−i, (Ni · A(s))Nn−i, Nn−i(A
(s) ·Ni), Nn−i(Ni · A(s)) ⊆ A(s)

for any nonnegative integer s and for any i ∈ Zn.

Proof. The statement of the corollary is obviously true for s = 0. Assume that s ≥ 1
and

(A(s−1) ·Ni)Nn−i, (Ni · A(s−1))Nn−i, Nn−i(A
(s−1) ·Ni), Nn−i(Ni · A(s−1)) ⊆ A(s−1).

Since A(s) = A(s−1)A(s−1) and A(s−1) is an ideal of A, it follows from Lemma 2 that

(A(s) ·Ni)Nn−i, (Ni · A(s))Nn−i, Nn−i(A
(s) ·Ni), Nn−i(Ni · A(s)) ⊆ A(s).2
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3. Z2-graded Novikov algebra with solvable even part

If N is a Z2-graded Novikov algebra, then we write N = A⊕M by setting A = N0 and
M = N1. Notice that the study of Z2-graded algebras is more popular since it is related
to the study of superalgebras. In this case A is called the even part and M is called the
odd part of N .

In this section we prove that every Novikov algebra over a field of characteristic 6= 2
with solvable even part is solvable. First formulate one important corollary of Lemma 2.

Corollary 2. Let N = A⊕M be a Z2-graded Novikov algebra. Then

J = A2 ⊕ (A2M +MA2)

is a Z2-graded ideal of N .

Proof. We write f ≡ g if f − g ∈ J . Let a, b, c ∈ A and m,n ∈M . First we prove that
J is a right ideal of N . We have

(ab)c ≡ 0, (ab)n ≡ 0,

((ab)m)c
by (2)

= ((ab)c)m ≡ 0,

(m(ab))c
by (2)

= (mc)(ab) ≡ 0,

since mc ∈M . By Lemma 2, ((ab)m)n, (m(ab))n ∈ A2.
Now we prove that J is a left ideal. We have

c(ab) ≡ 0, n(ab) ≡ 0,

c((ab)m) = −(c, ab,m) + (c(ab))m
by (1)
≡ −(ab, c,m) = −((ab)c)m+ (ab)(cm) ≡ 0,

c(m(ab)) = −(c,m, ab) + (cm)(ab)
by (1)
≡ −(m, c, ab) = −(mc)(ab) +m(c(ab)) ≡ 0.

By Lemma 2 n((ab)m), n(m(ab)) ∈ A2.
Thus J is a Z2-graded ideal of N . 2

Proposition 1. Let F be a field of characteristic 6= 2 and let N = A⊕M be a Z2-graded
Novikov algebra. Suppose that A2 = 0. Then N (n) = 0 for some positive integer n.

Several lemmas precede the proof of this proposition. These lemmas are formulated
under the conditions of Proposition 1.

Lemma 3. Let I = MM + AM . Then I is a Z2-graded ideal of algebra N2.

Proof. It is clear that N2 = MM +AM +MA. Then M2N2 ⊆ AM ⊆ I. Since A2 = 0,
using (2) we get

(AM)M2 ⊆ (AM2)M = 0.

Hence
IN2 ⊆M2N2 + (AM)M2 +M2 ⊆ I.

Therefore, I is a right ideal of N2.
Now we prove that I is a left ideal of N2. By (1) we have

(MA)M2 ⊆ (M,A,M2) +M(AM2) ⊆ (A,M,M2) ⊆ (AM)M2 + A(MM2) ⊆ AM.
5
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Hence N2M2 ⊆ I. From here we obtain that

(AM +MA)I ⊆ (AM +MA)M2 + (AM +MA)(AM) ⊆ N2M2 +M2 ⊆ I.

Therefore,

N2I ⊆M2I + (AM +MA)I ⊆ I.

Thus I is a Z2-graded ideal of the algebra N2. 2

Lemma 4. We can assume that MA = 0.

Proof. Let I = M2 + AM . Since N2 = I +MA, applying Lemma 3 we get

(N2)2 = (I +MA)2 ⊆ I2 + I(MA) + (MA)I + (MA)2 ⊆ I.

Hence, the algebra N is solvable if the algebra I = MM + AM is solvable. By (2), we
have

(AM)M2 ⊆ (AM2)M = 0.

Considering I instead of N , we can assume that MA = 0. 2

Lemma 5. We can assume that xy = yx for all x, y ∈M .

Proof. Let x, y ∈ M . First we show that [x, y]M = 0. Let z ∈ M . By lemma 4, we
obtain

(xy)z = (x, y, z) + x(yz) = (x, y, z)
by (1)

= (y, x, z) = (yx)z

since yz, xz ∈ A. Therefore, [x, y]M = 0 for all x, y ∈ M . By Lemma 4, we have
M [x, y] = 0, since [x, y] ∈ A.

Hence, the vector space [M,M ] spanned by all commutators [x, y], where x, y ∈M , lies
in the annihilator of the algebra N . Therefore, the algebra N is solvable, if the quotient
algebra N/[M,M ] of N is a solvable algebra. Changing N to N/[M,M ], we can assume
that xy = yx for all x, y ∈M . 2

The proof of Proposition 1. By Lemma 4, we can assume that MA = 0. Let I =
MM + AM . Then N2 = I. Therefore, it is sufficient to prove that the algebra I is
solvable.

Let a, b ∈ A, x, y ∈ M . By (2), we have (ax)(by) = (a(by))x. Using (1) and MA = 0
we obtain that

(a(by))x = (a, by, x) + a((by)x) = (by, a, x) = ((by)a)x− (by)(ax) = −(by)(ax).

Therefore, (ax)(by) = −(by)(ax). By Lemma 5, xy = yx for all x, y ∈ M . Using this we
get (ax)(by) = 0 over a field of characteristic 6= 2.

Consequently,

I2 ⊆ (MM)2 + (AM)2 + (MM)(AM) ⊆ AM.

Hence I(2) = 0.
Thus the algebra N is solvable. 2

Theorem 1. Every Z2-graded Novikov algebra with solvable even part over a field of
characteristic 6= 2 is solvable.
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Proof. Let N = A⊕M be a Z2-graded Novikov algebra with solvable even part A. Let
n be the length of solvability of A. We prove the statement of the theorem by induction
on n. If n = 1, then N is solvable by Proposition 1.

By Corollary 2, J = A2 ⊕ (A2M + MA2) is a Z2-graded ideal of N . Notice that the
even part A2 of J is solvable with solvability length n− 1. By the induction proposition,
J is solvable, that is, J (s) = 0 for some positive integer s. Moreover, the even part of
the quotient algebra N = N/J = A/A2 ⊕M/(A2M + MA2) has trivial multiplication.
Consequently, N is solvable by Proposition 1, that is, N (t) ⊆ J for some positive integer
t. Then, N (s+t) = 0. 2

Recall that the powers of an arbitrary algebra A are defined inductively by A1 = A and
An =

∑n
i=1A

iAn−i for all integers n ≥ 2. An algebra A is called nilpotent if An = 0 for
some positive integer n. Obviously, every nilpotent algebra is solvable. The converse is
not true in the case of Novikov algebras.

Example 1. [13] Let N = Fa + Fb be a vector space of dimension 2. The product on
N is defined as

ab = b, a2 = b2 = ba = 0.

It is easy to check thatN is a solvable Novikov algebra but not nilpotent since a(a . . . (ab) . . .) =
b 6= 0.

Moreover, N is a Z2-graded Novikov algebra with N0 = Fa and N1 = Fb. The even
part N0 of N is nilpotent. This means that in the formulation of Theorem 1, solvability
cannot be replaced by nilpotency.

4. Some ideals of Z3-graded Novikov algebras

Let

N = N0 ⊕N1 ⊕N2

be a Z3-graded Novikov algebra. We fix a a Z3-graded subspace

I = I0 ⊕ I1 ⊕ I2,(4)

where

I0 = A2 +N1N2 +N2N1, I1 = A2N1 +N1A
2 +N2

2 , I2 = A2N2 +N2A
2 +N2

1 .

Lemma 6. Let N be a Z3-graded Novikov algebra. Then the subspace I from (4) is a
Z3-graded ideal of N2. Moreover, N (2) ⊆ I.

Proof. Since A,N0, and N2 are A-bimodules, then I is also an A-bimodule by Lemma
1, that is IA ⊆ I and AI ⊆ I. Moreover, since N2

2 +A2N1 +N1A
2 ⊆ N1 and N2

1 +A2N2 +
N2A

2 ⊆ N2, it follows that I is a subalgebra of N .
We first prove the inclusions

I(ANi), I(NiA), (ANi)I, (NiA)I ⊆ I, i = 1, 2.(5)

We will check only the inclusion I(AN1) ⊆ I since the other inclusions can be checked
similarly. We have (N1N2)N1 ⊆ (N1N1)N2 ⊆ N2

2 by (2). Therefore, (N1N2)(AN1) ⊆
7
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N2
2 ⊆ I. By (2) and (1) we have

(N2N1)(AN1) ⊆ (N2 · AN1)N1 ⊆ (N2, AN1, N1) +N2N
2
1

⊆ (AN1, N2, N1) +N2
2 ⊆ (AN1 ·N2)N1 + (AN1)(N2N1) +N2

2

⊆ (AN1 ·N1)N2 + (A ·N2N1)N1 +N2
2 ⊆ N2

2 + A2N2 ⊆ I.

These inclusions imply that

I0(AN1) = (A2 +N1N2 +N2N1)(AN1) ⊆ I

since (A2)(AN1) ⊆ (A2)N1 ⊆ I. Notice that I1(AN1) ⊆ N1(AN1) ⊆ N2
1 ⊆ I. Moreover,

(A2N2 + N2A
2)(AN1) ⊆ A2 ⊆ I by Corollary 1. Since N2

1 (AN1) ⊆ N2N1 ⊆ I it follows
that I2(AN1) ⊆ I. Consequently, I(AN1) ⊆ I.

Notice that

N2 = (A2 +N1N2 +N2N1)⊕ (AN1 +N1A+N2
2 )⊕ (AN2 +N2A+N2

1 )

and

N2 = I + AN1 +N1A+ AN2 +N2A.

Since I is a subalgebra of N , the inclusions (5) imply that I is an ideal of N2. It is clear
that N (2) ⊆ I. 2

Lemma 7. Let N be a Z3-graded Novikov algebra. Let

K = A2 ⊕ (A2N1 +N1A
2 + (A2N2)

2)⊕ (A2N2 +N2A
2 + (A2N1)

2)

be a Z3-graded subspace of I. Then K is a Z3-graded ideal of I.

Proof. We have KA,AK ⊆ K by Lemma 1. First we show that

N(A2Ni)
2, (A2Ni)

2N ⊆ K, i = 1, 2.(6)

We check these inclusions for i = 1 since the case i = 2 can be treated similarly. An
obvious inclusion A2N1 ·N1 ⊆ N2, (2), and Corollary 1 imply that

(A2N1)
2N1 ⊆ (A2N1 · A2N1)N1 ⊆ (A2N1 ·N1) · A2N1 ⊆ N2 · A2N1 ⊆ A2 ⊆ K.

By (1), we also get

N1(A
2N1)

2 ⊆ (N1, A
2N1, A

2N1) + (N1 · A2N1) · A2N1

⊆ (A2N1, N1, A
2N1) +N2 · A2N1

⊆ (A2N1 ·N1) · A2N1 + A2N1 · (N1 · A2N1) +N2 · A2N1 ⊆ N2(A
2N1) + (A2N1)N2

since A2N1 ·N1, N1 ·A2N1 ⊆ N2. Applying Corollary 1 we obtain N1(A
2N1)

2 ⊆ A2 ⊆ K.
Notice that A2N1 ·N2 ⊆ A2 by Corollary 1. Using (2) we get

(A2N1)
2N2 ⊆ (A2N1 ·N2) · A2N1 ⊆ A2 · A2N1 ⊆ A2N1 ⊆ K.

Similarly,

N2(A
2N1)

2 ⊆ (N2, A
2N1, A

2N1) + (N2 · A2N1) · A2N1

⊆ (A2N1, N2, A
2N1) + A2 · A2N1

⊆ (A2N1 ·N2) · A2N1 + A2N1 · (N2 · A2N1) + A2 · A2N1

⊆ A2 · A2N1 + A2N1 · A2 ⊆ K.
8
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We now prove that K is a subalgebra of N . By Corollary 1,

(A2N1 +N1A
2)N2, N2(A

2N1 +N1A
2) ⊆ A2.

Consequently,

(A2N1 +N1A
2)(A2N2 +N2A

2), (A2N2 +N2A
2)(A2N1 +N1A

2) ⊆ A2.

Using (2) we get

(N1A
2)(A2N1) ⊆ (N1 · A2N1)A

2 ⊆ N2A
2, (N1A

2)(N1A
2) ⊆ N2A

2.

Similarly,

(A2N1)(N1A
2) ⊆ (A2 ·N1A

2)N1 ⊆ (A2N1 · A2 + (A2, N1, A
2))N1.

Applying (2), (1), and (3), we obtain

(A2N1)(N1A
2) ⊆ (A2N1 · A2 + (A2, N1, A

2))N1 ⊆ (A2N1 ·N1)A
2 + (N1, A

2, A2)N1 ⊆

N2A
2 + (N1N1, A

2, A2) ⊆ N2A
2.

Similarly, (N2A
2)(A2N2), (N2A

2)(N2A
2), (A2N2)(N2A

2) ⊆ N1A
2.

These inclusions together with (6) give that K is a subalgebra of N .
We now prove that K is an ideal of I. It is clear that

(N2
1 +N2

2 )A2, A2(N2
1 +N2

2 ) ⊂ K.

By Corollary 1, we get

(A2N1 +N1A
2)N2

1 , N
2
1 (A2N1 +N1A

2) ⊆ A2

since N2
1 ⊆ N2. Using (2) and Corollary 1 we also get

N2
2 (A2N1 +N1A

2) ⊆ (N2 · (A2N1 +N1A
2)N2 ⊆ A2N2.

Similar calculations with (1) give that

(A2N1 +N1A
2)N2

2 ⊆ (A2N1 +N1A
2, N2, N2) + ((A2N1 +N1A

2)N2)N2 ⊆

(N2, A
2N1 +N1A

2, N2) + A2N2 ⊆ A2N2 +N2A
2 ⊆ K.

Therefore,

I(A2N1 +N1A
2), (A2N1 +N1A

2)I ⊆ K.

Similarly,

I(A2N2 +N2A
2), (A2N2 +N2A

2)I ⊆ K.

These inclusions together with (6) give that K is an ideal of I. 2
9
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5. Z3-graded Novikov algebras with solvable 0-component

In this section we show that Z3-graded Novikov algebras over a field of characteristic
6= 3 with solvable 0-component are solvable. We start with the case when the length of
solvability of the 0-component is 1.

Proposition 2. Let F be a field of characteristic 6= 3 and let N = N0 ⊕ N1 ⊕ N2 be a
Z3-graded Novikov algebra. Suppose that N2

0 = 0. Then N is a solvable algebra.

We give several lemmas prior to the proof of this proposition. These lemmas are
formulated under the conditions of Proposition 2. The 0-component of N is usually
denoted by A = N0.

First formulate a direct corollary of Lemma 6.

Corollary 3. The vector space I = N1N2 +N2N1 +N2
1 +N2

2 is a Z3-graded ideal of N2.
Moreover, N (2) ⊆ I.

For any elements a, b ∈ N define a ◦ b = ab+ ba.

Lemma 8. Let a ∈ N2
1 and b ∈ N2

2 . Then a ◦ b = 0. Moreover, we can assume that
x ◦ y = 0 for any x ∈ N1, y ∈ N2 and A = N1N2.

Proof. Let x1, y1 ∈ N1 and x2, y2 ∈ N2. Then

(x1y1)(x2y2)
by (2)

= (x1 · x2y2)y1 = (x1x2 · y2)y1 − (x1, x2, y2)y1
by (1)

= (x1x2 · y2)y1 − (x2, x1, y2)y1 = (x1x2 · y2)y1 − (x2x1 · y2)y1 + (x2 · x1y2)y1
by (2)

= ([x1, x2]y2)y1 + (x2y1)(x1y2) = ([x1, x2]y2)y1

since (x2y1)(x1y2) = 0. Similarly, (x2y2)(x1y1) = ([x2, x1]y1)y2.
Therefore, we have

(x1y1) ◦ (x2y2) = ([x1, x2]y2)y1 + ([x2, x1]y1)y2
by (2)

= (([x1, x2] + [x2, x1])y2)y1 = 0.

Consequently, a ◦ b = 0 for all a ∈ N2
1 , b ∈ N2

2 .
By Corollary 3, I is an ideal of N2 and N (2) ⊆ I. Consequently, the algebra N is

solvable if and only if I is solvable. Replacing N by I, we may assume that x ◦ y = 0 for
all x ∈ N1, y ∈ N2 and A = N1N2. 2

Lemma 9. The following equalities hold in N :

[N1, N1]N2 = 0, [N2, N2]N1 = 0, (N1N2)[Ni, Ni] = 0, [Ni, Ni](N1N2) = 0,

where i = 1, 2.

Proof. Let x1, y1 ∈ N1 and x2 ∈ N2. By Lemma 8, x1x2 = −x2x1 and y1x2 = −x2y1.
Then we obtain

(x1y1)x2
by (2)

= (x1x2)y1 = −(x2x1)y1
by (2)

= −(x2y1)x1 = (y1x2)x1
by (2)

= (y1x1)x2.

Therefore, [x1, y1]x2 = 0. Hence, [N1, N1]N2 = 0. Similarly, [N2, N2]N1 = 0.
Now we will show that (N1N2)[N1, N1] = 0. By (2),

(N1N2)[N1, N1] ⊆ (N1[N1, N1])N2.
10
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Since [N1, N1] ⊆ N2 and N1N2 ⊆ N2N1 by Lemma 8, it follows that

(N1N2)[N1, N1] ⊆ (N1[N1, N1])N2 ⊆ ([N1, N1]N1)N2 ⊆ ([N1, N1]N2)N1 = 0.

Notice that

[N1, N1](N1N2) ⊆ ([N1, N1], N1, N2) + ([N1, N1]N1)N2.

From this, using (1) and (2), we get

[N1, N1](N1N2) ⊆ (N1, [N1, N1], N2) + ([N1, N1]N2)N1

⊆ (N1, [N1, N1], N2) ⊆ (N1[N1, N1])N2,

since [N1, N1]N2 = 0. Since (N1N2)[N1, N1] = 0, applying (2) we obtain

[N1, N1](N1N2) ⊆ (N1[N1, N1])N2 ⊆ (N1N2)[N1, N1] = 0.

Similarly, (N1N2)[N2, N2] = 0 and [N2, N2](N1N2) = 0. 2

Lemma 10. We can assume that N1A = 0, N2A = 0.

Proof. First we prove that K = N1N2 + AN1 + N1A + N2
1 is a Z3-graded ideal of the

algebra N and N (3) ⊆ K.
We have AN2

1 , N
2
1A ⊆ N2

1 by Lemma 1. Hence AK,KA ⊆ K. Since N2
1 ⊆ N2 it follows

that N1K,KN1 ⊆ K. By Lemma 8 and (2), we get

(N1N2)N2 ⊆ (N2N1)N2 ⊆ N2
2N1 ⊆ N1N1.

Therefore, KN2 ⊆ K, since N2
1N2 ⊆ (N1N2)N1 ⊆ AN1.

Applying (1) and (2), we see that

N2(N1N2) ⊆ (N2N1)N2 + (N2, N1, N2) ⊆ (N2N2)N1 + (N2, N1, N2) ⊆

N2
1 + (N1, N2, N2) ⊆ N2

1 + (N1N2)N2 +N1N
2
2 ⊆ N2

1 .

Similarly, one can prove that

N2N
2
1 ⊆ (N2N1)N1 + (N2, N1, N1) ⊆ AN1 + (N1, N2, N1) ⊂ AN1 +N1A.

Therefore, N2K ⊂ K.
Consequently, K is a Z3-graded ideal of the algebra N .
Let N/K = A+N1 +N2, where A,N1, N2 are the images of A,N1, N2 in the quotient

algebra N/K, respectively. Then (N/K)2 ⊆ N2
2

+N2 ⊆ N1 +N2. Therefore, (N/K)(2) ⊆
N2

2 ⊆ N1. Hence N (3) ⊆ K and N is a solvable if and only if K is solvable.
Let K1 = N1N2 + AN1 +N2

1 . We show that K1 is an ideal of K.
We have N2

1N
2
1 ⊆ (N1N

2
1 )N1 ⊆ AN1 by (2). By Lemma 1, we get AK1, K1A ⊆ K1.

Therefore, K2
1 ⊆ K1, i.e., K1 is a subalgebra of K. Using (1) and (2), we also have

(N1A)A = (N1, A,A) ⊆ (A,N1, A) ⊆ (AN1)A+ A(N1A) ⊆ A2N1 + AN1 ⊆ AN1.

Therefore, K1 is a ideal of K. Moreover, K2 ⊆ K1. Hence the algebra N is solvable if
and only if K1 is solvable. Therefore, replacing N by K1, we can assume that N1A = 0
since (AN1)A ⊆ A2N1 = 0. In this case we have N2

1A ⊆ (N1A)N1 = 0.
Thus, we can assume that N1A = 0, N2A = 0 in N . 2

Lemma 11. We can assume that [N1, N1] = [N2, N2] = 0.
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Proof. First we prove that the vector space K = N1[N1, N1] + N2[N1, N1] + [N1, N1] is
a Z3-graded ideal of N and K(2) = 0.

We have A = N1N2 by Lemma 8. Then Lemma 9 and Lemma 1 give that AK,KA ⊆ K.
We prove that N1K ⊆ K. By Lemma 10, we have N1(N1[N1, N1]) ⊆ N1A = 0. Since

N2[N1, N1] ⊆ N1, using (2) and Lemma 9 we get

N1(N2[N1, N1]) ⊆ [N1, N2[N1, N1]] + (N2[N1, N1])N1

⊆ [N1, N1] + (N2N1)[N1, N1] ⊆ [N1, N1].

Therefore, N1K ⊆ K.
Applying (2), Lemma 9, and Lemma 8, we obtain that

KN1 ⊆ N2
1 [N1, N1] + (N2N1)[N1, N1] + [N1, N1]N1

⊆ N2[N1, N1] +N1[N1, N1] ⊆ K.

Consequently, N1K ⊆ K and KN1 ⊆ K.
We prove that N2K,KN2 ⊆ K. By Lemma 10, Lemma 8, and (2), we get

N2K ⊆ (N2[N1, N1])N2 +N2[N1, N1]

⊆ N2
2 [N1, N1] +N2[N1, N1] ⊆ N1[N1, N1] +N2[N1, N1] ⊆ K.

Since [N1, N1]N2 = 0 and (N1N2)[N1, N1] = 0 by Lemma 9, using (2) we obtain

KN2 ⊆ (N1[N1, N1])N2 + (N2[N1, N1])N2 + [N1, N1]N2 ⊆
(N1N2)[N1, N1] +N2

2 [N1, N1] ⊆ N1[N1, N1].

Therefore, K is an ideal of the algebra N .
Applying Lemma 9, (1), and Lemma 10, we also get

N1(N2[N1, N1]) ⊆ (N1, N2, [N1, N1]) ⊆ (N2, N1, [N1, N1]) ⊆
(N2N1)[N1, N1] +N2(N1[N1, N1]) ⊆ N2A = 0.

Therefore,
(N1[N1, N1])(N2[N1, N1]) ⊆ (N1(N2[N1, N1]))[N1, N1] = 0.

SinceN2[N1, N1] ⊆ N1 it follows that (N2[N1, N1])
2 ⊆ N1(N2[N1, N1]) = 0. Since [N1, N1] ⊆

N2, using Lemma 9 we get [N1, N1]
2 ⊆ [N1, N1]N2 = 0. Therefore, by Lemma 8 and

Lemma 9, we also get

K2 ⊆ (N1[N1, N1])(N2[N1, N1]) + (N2[N1, N1])[N1, N1] ⊆ N1[N1, N1] ⊆ N1N2 ⊆ A.

Then K(2) = 0.
Similarly, L = N2[N2, N2]+N1[N2, N2]+[N2, N2] is a ideal of the algebra N and L(2) = 0.

Therefore, K+L is a solvable ideal of the algebra N . From the solvability of the quotient
algebra N/(K + L) follows the solvability of N . We have [Ni, Ni] = 0 in the quotient
algebra N/(K + L), where Ni is the image of Ni in N/(K + L), i = 1, 2.

Hence we can assume that [N1, N1] = [N2, N2] = 0 in the algebra N . 2

The proof of the Proposition 2. Let x1, y1 ∈ N1, x2 ∈ N2. Then

(x1y1)x2
by (2)

= (x1x2)y1
by Lemma 8

= −(x2x1)y1 = −(x2, x1, y1)− x2(x1y1)
by (1) and Lemma 11

=

−(x1, x2, y1)− (x1y1)x2
by Lemma 10

= −(x1x2)y1 − (x1y1)x2
by (2)

= −2(x1y1)x2.
12
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Hence 3(x1y1)x2 = 0. Therefore, N2
1N2 = 0. Then N2N

2
1 = 0 by Lemma 11. Similarly,

N2
2N1 = 0 and N1N

2
2 = 0

Consequently, N2
1N

2
1 ⊆ N2

1N2 = 0 and N2
2N

2
2 ⊆ N2

2N1 = 0. Moreover, N2
1N

2
2 ⊆

(N1N
2
2 )N1 = 0. Similarly, N2

2N
2
1 = 0.

Let I = N1N2 + N2
1 + N2

2 . By Lemma 1, I2 ⊆ N2
1 + N2

2 and I(2) = 0. By Corollary 3
and Lemma 8, we get N (2) ⊆ I. Hence the algebra N is solvable. 2

Theorem 2. Let F be a field of characteristic 6= 3 and let N = N0 + N1 + N2 be a
Z3-graded Novikov algebra. Suppose that N0 is a solvable algebra. Then N is a solvable
algebra.

Proof. Let A = N0 be a solvable algebra with solvability length n ≥ 1. If n = 1, then
N is solvable by Proposition 2. Suppose that n ≥ 2, that is A2 6= 0. Let I be the ideal of
N2 from Lemma 6. Recall that N (2) ⊆ I. Therefore, it is sufficient to prove that I is a
solvable ideal of N .

Let K be the ideal of I from Lemma 7. Since (A2 +N1N2 +N2N1)
2 ⊆ A2, the quotient

algebra I/K is again solvable by Proposition 2. Therefore, I(s) ⊆ K for some positive
integers s.

Notice that the 0-component of K is A2 and has the solvability length n− 1. Leading
an induction on n we may assume that K is solvable. Consequently, I and N are both
solvable. 2

Corollary 4. Let n be a positive integer of the form n = 2s3t > 1 for some nonnegative
integers s, t. Let N be a Zn-graded Novikov algebra over a field of characteristic 6= 2, 3.
If N0 is solvable, then N is solvable.

This is a standard corollary of Theorems 1 and 2 (see, for example [28]).
The right powers of an arbitrary algebra A are defined inductively by A[1] = A and

A[n] = A[n−1]A for all integers n ≥ 2. An algebra A is called right nilpotent if A[n] = 0
for some positive integer n. I. Shestakov and Z. Zhang recently proved [13] that every
solvable Novikov algebra is right nilpotent.

Corollary 5. Let n be a positive integer of the form n = 2s3t > 1 for some nonnegative
integers s, t. Let N be a Zn-graded Novikov algebra over a field of characteristic 6= 2, 3.
If N0 is right nilpotent, then N is right nilpotent.
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