Millán, A.; Sala, N.; Torres, M.; Canela-Garayoa, R. Biocatalytic Transformation of 5-Hydroxymethylfurfural into 2,5-di(hydroxymethyl)furan by a Newly Isolated Fusarium striatum Strain. Catalysts2021, 11, 216.
Millán, A.; Sala, N.; Torres, M.; Canela-Garayoa, R. Biocatalytic Transformation of 5-Hydroxymethylfurfural into 2,5-di(hydroxymethyl)furan by a Newly Isolated Fusarium striatum Strain. Catalysts 2021, 11, 216.
Millán, A.; Sala, N.; Torres, M.; Canela-Garayoa, R. Biocatalytic Transformation of 5-Hydroxymethylfurfural into 2,5-di(hydroxymethyl)furan by a Newly Isolated Fusarium striatum Strain. Catalysts2021, 11, 216.
Millán, A.; Sala, N.; Torres, M.; Canela-Garayoa, R. Biocatalytic Transformation of 5-Hydroxymethylfurfural into 2,5-di(hydroxymethyl)furan by a Newly Isolated Fusarium striatum Strain. Catalysts 2021, 11, 216.
Abstract
2,5-Di(hydroxymethyl)furan (DHMF) is a high-value chemical block than can be synthesized from 5-hydroxymethylfurfural (HMF), a platform chemical that results from the dehydration of biomass-derived carbohydrates. In this work, the HMF biotransformation capability of different Fusarium species was evaluated and F. striatum was selected to produce DHMF. The effects of the inoculum size, glucose concentration and pH of the media over DHMF production were evalu-ated by a 23 factorial design. A substrate feeding approach was found suitable to overcome the toxicity effect of HMF towards the cells when added at high concentrations (>75 mM). The pro-cess was successfully scaled-up at bioreactor scale (1.3 L) with excellent DHMF production yields (95%) and selectivities (98%). DHMF was purified from the reaction media with high recovery and purity by organic solvent extraction with ethyl acetate.
Biology and Life Sciences, Biochemistry and Molecular Biology
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.