Version 1
: Received: 14 January 2021 / Approved: 15 January 2021 / Online: 15 January 2021 (13:30:21 CET)
How to cite:
Serrano-Aroca, Á.; Takayama, K.; Tuñón-Molina, A.; Seyran, M.; Hassan, S.S.; Pal Choudhury, P.; N. Uversky, V.; Lundstrom, K.; Adadi, P.; Palù, G.; A. A. Aljabali, A.; Chauhan, G.; Kandimalla, R.; M. Tambuwala, M.; Lal, A.; D. Uhal, B.; M. Brufsky, A. Carbon-Based Nanomaterials: Promising Antiviral Agents to Combat COVID-19 in the Microbial Resistant Era. Preprints2021, 2021010297 (doi: 10.20944/preprints202101.0297.v1).
Serrano-Aroca, Á.; Takayama, K.; Tuñón-Molina, A.; Seyran, M.; Hassan, S.S.; Pal Choudhury, P.; N. Uversky, V.; Lundstrom, K.; Adadi, P.; Palù, G.; A. A. Aljabali, A.; Chauhan, G.; Kandimalla, R.; M. Tambuwala, M.; Lal, A.; D. Uhal, B.; M. Brufsky, A. Carbon-Based Nanomaterials: Promising Antiviral Agents to Combat COVID-19 in the Microbial Resistant Era. Preprints 2021, 2021010297 (doi: 10.20944/preprints202101.0297.v1).
Cite as:
Serrano-Aroca, Á.; Takayama, K.; Tuñón-Molina, A.; Seyran, M.; Hassan, S.S.; Pal Choudhury, P.; N. Uversky, V.; Lundstrom, K.; Adadi, P.; Palù, G.; A. A. Aljabali, A.; Chauhan, G.; Kandimalla, R.; M. Tambuwala, M.; Lal, A.; D. Uhal, B.; M. Brufsky, A. Carbon-Based Nanomaterials: Promising Antiviral Agents to Combat COVID-19 in the Microbial Resistant Era. Preprints2021, 2021010297 (doi: 10.20944/preprints202101.0297.v1).
Serrano-Aroca, Á.; Takayama, K.; Tuñón-Molina, A.; Seyran, M.; Hassan, S.S.; Pal Choudhury, P.; N. Uversky, V.; Lundstrom, K.; Adadi, P.; Palù, G.; A. A. Aljabali, A.; Chauhan, G.; Kandimalla, R.; M. Tambuwala, M.; Lal, A.; D. Uhal, B.; M. Brufsky, A. Carbon-Based Nanomaterials: Promising Antiviral Agents to Combat COVID-19 in the Microbial Resistant Era. Preprints 2021, 2021010297 (doi: 10.20944/preprints202101.0297.v1).
Abstract
Therapeutic options for the highly pathogenic human Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) causing the current pandemic Coronavirus disease (COVID-19) are urgently needed. COVID-19 is associated with viral pneumonia and acute respiratory distress syndrome causing significant morbidity and mortality. The proposed treatments for COVID-19, such as hydroxychloroquine, remdesivir and lopinavir/ritonavir, have shown little or no effect in the clinic. Additionally, bacterial and fungal pathogens contribute to the SARS-CoV-2 mediated pneumonia disease complex. The antibiotic resistance in pneumonia treatment is increasing at an alarming rate. Therefore, carbon-based nanomaterials (CBNs), such as fullerene, carbon dots, graphene, and their derivatives constitute a promising alternative due to their wide-spectrum antimicrobial activity, biocompatibility, biodegradability and capacity to induce tissue regeneration. Furthermore, the antimicrobial mode of action is mainly physical (e.g. membrane distortion), which is characterized by a low risk of antimicrobial resistance. In this review, we evaluated the literature on the antiviral activity and broad-spectrum antimicrobial properties of CBNs. CBNs had antiviral activity against 12 enveloped positive-sense single-stranded RNA viruses similar to SARS-CoV-2. CBNs with low or no toxicity to the humans are promising therapeutics against COVID-19 pneumonia complex with other viruses, bacteria and fungi, including those that are multidrug-resistant.
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.