Preprint
Concept Paper

Device Classification-based Context Management for Ubiquitous Computing using Machine Learning

Altmetrics

Downloads

300

Views

365

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

10 January 2021

Posted:

14 January 2021

You are already at the latest version

Alerts
Abstract
Ubiquitous computing comprises scenarios where networks, devices within the network, and software components change frequently. Market demand and cost-effectiveness are forcing device manufacturers to introduce new-age devices. Also, the Internet of Things (IoT) is transitioning rapidly from the IoT to the Internet of Everything (IoE). Due to this enormous scale, effective management of these devices becomes vital to support trustworthy and high-quality applications. One of the key challenges of IoT device management is automatic device classification with the logically semantic type and using that as a parameter for device context management. This would enable smart security solutions. In this paper, a device classification approach is proposed for the context management of ubiquitous devices based on unsupervised machine learning. To classify unknown devices and to label them logically, a proactive device classification model is framed using a k-Means clustering algorithm. To group devices, it uses the information of network parameters such as Received Signal Strength Indicator (rssi), packet_size, number_of_nodes in the network, throughput, etc. Experimental analysis suggests that the well-formedness of clusters can be used to derive cluster labels as a logically semantic device type which would be a context for resource management and authorization of resources. This paper fulfills an identified need of proactive device classification for device management.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated