Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Scaling of Measure Fluctuations on a Flapping Flag Device in the Open Channel Around a Cylinder At $Re=10^4$ : Taylor's Law Approach

Version 1 : Received: 13 January 2021 / Approved: 14 January 2021 / Online: 14 January 2021 (13:15:14 CET)

A peer-reviewed article of this Preprint also exists.

De Bartolo, S.; Vittorio, M.D.; Francone, A.; Guido, F.; Leone, E.; Mastronardi, V.M.; Notaro, A.; Tomasicchio, G.R. Direct Scaling of Measure on Vortex Shedding through a Flapping Flag Device in the Open Channel around a Cylinder at Re∼103: Taylor’s Law Approach. Sensors 2021, 21, 1871. De Bartolo, S.; Vittorio, M.D.; Francone, A.; Guido, F.; Leone, E.; Mastronardi, V.M.; Notaro, A.; Tomasicchio, G.R. Direct Scaling of Measure on Vortex Shedding through a Flapping Flag Device in the Open Channel around a Cylinder at Re∼103: Taylor’s Law Approach. Sensors 2021, 21, 1871.

Abstract

Experimental evidence showed how various complex systems, characterized by a fluctuation scaling, satisfy the well-known Taylor's law. The present work aims to apply for the first time Taylor's law, given its general treatment, for a flow field at $Re$ around $10^4$, since activity of each fluid particle is highly fluctuating, especially in the context of vortex shedding. In addition, the further element of innovation is the use of an innovative thin-films based device consisting of an elastic piezoelectric flapping flag that is proposed as a measuring instrument of the flow field. The oscillations of the flapping flag, due to the vortexes release downstream to an obstacle of cylindrical shape, generate an alternating piezoelectric voltage whose time history is similar to the chaotic components of the fully developed turbulent speed. Preliminary experimental results about the use of thin-films based device in a flume channel are reported together with a second order analysis on the voltage difference and a scaling law of the exponent scale.

Keywords

sensors technologies; sensor systems for water flow; hydrodynamics monitoring of rivers; hydraulics; MEMS; Fluid-structure interactions

Subject

Engineering, Automotive Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.