Preprint
Article

This version is not peer-reviewed.

Effect of Pr6O11 on the Microstructures and Mechanical Properties of High-Strength Steel Weld Metal

Submitted:

11 January 2021

Posted:

12 January 2021

You are already at the latest version

Abstract
The effect of rare earth Pr6O11 on the microstructure and mechanical properties of high-strength steel weld metal was investigated by optical microscopy, scanning electron microscopy and mechanical testing. Three different contents of Pr6O11 were added to the flux-cored wires. The results showed that the addition of 1% Pr6O11 can promote the refinement and spheroidization of inclusions, refine the grains, form acicular ferrites, and significantly improve the toughness of weld metal. The addition of Pr6O11 promoted the formation of rare earth composite inclusions and acicular ferrites in the weld metal, refined the lath microstructure, inhibited the formation of martensite and bainite. The crack formation mode changed from the boundary cracking of the bainite clusters caused by the surface shear stress to the surface shear stress-induced decohesion of inclusion. However, excessive addition of Pr6O11 will reduce the number of inclusion nucleation and deteriorate the mechanical properties. The wire No.2 with 1% Pr6O11 had the good comprehensive mechanical properties, and the corresponding values were 835MPa of tensile strength and 72 J of impact toughness. These findings suggest that the control of Pr6O11 can be an effective way to improve the impact toughness of weld metal.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated