Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Nanotechnology for Biosensors: A Review

Version 1 : Received: 7 January 2021 / Approved: 8 January 2021 / Online: 8 January 2021 (11:57:14 CET)

A peer-reviewed article of this Preprint also exists.

Banerjee, A.; Maity, S.; Mastrangelo, C.H. Nanostructures for Biosensing, with a Brief Overview on Cancer Detection, IoT, and the Role of Machine Learning in Smart Biosensors. Sensors 2021, 21, 1253. Banerjee, A.; Maity, S.; Mastrangelo, C.H. Nanostructures for Biosensing, with a Brief Overview on Cancer Detection, IoT, and the Role of Machine Learning in Smart Biosensors. Sensors 2021, 21, 1253.

Journal reference: Sensors 2021, 21, 1253
DOI: 10.3390/s21041253

Abstract

Biosensors are essential tools which have been traditionally used to monitor environmental pollution, detect the presence of toxic elements and biohazardous bacteria or virus in organic matter and biomolecules for clinical diagnostics. In the last couple of decades, the scientific community has witnessed their widespread application in the fields of military, health care, industrial process control, environmental monitoring, food-quality control, and microbiology. Biosensor technology has greatly evolved from the in vitro studies based on the biosensing ability of organic beings to the highly sophisticated world of nanofabrication enabled miniaturized biosensors. The incorporation of nanotechnology in the vast field of biosensing has led to the development of novel sensors and sensing mechanisms, as well as an increase in the sensitivity and performance of the existing biosensors. Additionally, the nanoscale dimension further assists the development of sensors for rapid and simple detection in vivo as well as the ability to probe single-biomolecules and obtain critical information for their detection and analysis. However, the major drawbacks of this include, but are not limited to potential toxicities associated with the unavoidable release of nanoparticles into the environment, miniaturization induced unreliability, lack of automation, and difficulty of integrating the nanostructured-based biosensors as well as unreliable transduction signals from these devices. Although the field of biosensors is vast, we intend to explore various nanotechnology enabled biosensors as part of this review article and provide a brief description of their fundamental working principles and potential applications.

Subject Areas

Biosensors; review; nanotechnology; cancer detection; IoT; low power sensors

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.