You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Concept Paper

The Physics–Biology Continuum Refutes Darwinism: Evolution is Directed by the Homeostasis-Dependent Bidirectional Relation between Genome and Phenotype

Altmetrics

Downloads

269

Views

436

Comments

0

This version is not peer-reviewed

Submitted:

05 January 2021

Posted:

06 January 2021

You are already at the latest version

Alerts
Abstract
The physics–biology continuum relies on the fact that life emerged from prebiotic molecules. Here, I argue that life emerged from the physical coupling between the synthesis of nucleic acids and the synthesis of amino acid polymers. Owing to this physical coupling, amino acid polymers (or proto-phenotypes) maintained the physicochemical parameter equilibria (proto-homeostasis) in the immediate environment of their encoding nucleic acids (or proto-genomes). This protected the proto-genome physicochemical integrity (i.e., atomic composition) from environmental physicochemical stresses, and therefore increased the probability of reproducing the proto-genome without variation. From there, genomes evolved depending on the biological activities they generated in response to environmental fluctuations. Thus, a genome generating an internal environment whose physicochemical parameters guarantee homeostasis and genome integrity has a higher probability to be reproduced without variation and therefore to reproduce the same phenotype in offspring. Otherwise, the genome is modified by the imbalances of the internal physicochemical parameters it generates, until new emerging biological activities maintain homeostasis. In sum, evolution depends on feedforward and feedback loops between genome and phenotype, since the internal physicochemical conditions that a genome generates in response to environmental fluctuations in turn either guarantee the stability or direct the variation of the genome.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated