Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

The Hypothesis of the Prolonged Cell Cycle in Turner Syndrome

Version 1 : Received: 4 January 2021 / Approved: 5 January 2021 / Online: 5 January 2021 (14:13:38 CET)
Version 2 : Received: 28 February 2022 / Approved: 3 March 2022 / Online: 3 March 2022 (04:27:26 CET)

How to cite: Álvarez-Nava, F. The Hypothesis of the Prolonged Cell Cycle in Turner Syndrome. Preprints 2021, 2021010098. Álvarez-Nava, F. The Hypothesis of the Prolonged Cell Cycle in Turner Syndrome. Preprints 2021, 2021010098.


Turner syndrome (TS) is a chromosomal disorder that is caused by a missing or structurally abnormal second sex chromosome. Subjects with TS are at an increased risk of developing intrauterine growth retardation, low birthweight, short stature, congenital heart diseases, infertility, obesity, dyslipidemia, hypertension, insulin resistance, type 2 diabetes mellitus, metabolic syndrome, and cardiovascular diseases (stroke and myocardial infarction). The underlying pathogenetic mechanism of TS is unknown. The assumption that X chromosome-linked gene haploinsufficiency is associated with the TS phenotype is questioned since such genes have not been identified. Thus, other pathogenic mechanisms have been suggested to explain this phenotype. Morphogenesis encompasses a series of events that includes cell division, the production of migratory precursors and their progeny, differentiation, programmed cell death and integration into organs and systems. The precise control of the growth and differentiation of cells is essential for normal development. The cell cycle frequency and the number of proliferating cells are essential in cell growth. 45,X cells have a failure to proliferate at a normal rate, leading to a decreased cell number in a given tissue during organogenesis. A convergence of data indicates an association between a prolonged cell cycle and the phenotypical features in Turner syndrome. This review aims to examine old and new findings concerning the relationship between a prolonged cell cycle and TS phenotype. These studies reveal a diversity of phenotypic features in TS that could be explained by reduced cell proliferation. The implications of this hypothesis for our understanding of the TS phenotype and its pathogenesis are discussed. It is not surprising that 45,X monosomy leads to cellular growth pathway dysregulation with profound deleterious effects on both embryonic and later stages of development. The prolonged cell cycle could represent the beginning of the pathogenesis of TS, leading to a series of phenotypic consequences in embryonic/fetal, neonatal, pediatric, adolescence, and adulthood life.


Cell proliferation; congenital heart disease; embryonic lethality, folliculogenesis; neuropsychological profile; prolonged cell cycle; short stature; Turner syndrome


Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0

Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.