Preprint
Article

This version is not peer-reviewed.

AutoMH: Automatically Create Evolutionary Metaheuristic Algorithms Using Reinforced Learning

A peer-reviewed article of this preprint also exists.

Submitted:

31 December 2020

Posted:

04 January 2021

You are already at the latest version

Abstract
Machine learning research has been able to solve problems in multiple aspects. An open area of research is machine learning for solving optimisation problems. An optimisation problem can be solved using a metaheuristic algorithm, which is able to find a solution in a reasonable amount of time. However, there is a problem, the time required to find an appropriate metaheuristic algorithm, that would have the convenient configurations to solve a set of optimisation problems properly. A solution approach is shown here, using a proposal that automatically creates metaheuristic algorithms aided by a reinforced learning approach. Based on the experiments performed, the approach succeeded in creating a metaheuristic algorithm that managed to solve a large number of different continuous domain optimisation problems. This work's implications are immediate because they describe a basis for the generation of metaheuristic algorithms in real-time.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated