Preprint
Article

This version is not peer-reviewed.

Adaptive Cannistraci-Hebb Network Automata Modelling of Complex Networks for Path-based Link Prediction

Submitted:

02 January 2026

Posted:

04 January 2026

You are already at the latest version

Abstract
Many complex networks have partially observed or evolving connectivity, making link prediction a fundamental task. Topological link prediction infers missing links using only network topology, with applications in social, biological, and technological systems. The Cannistraci-Hebb (CH) theory provides a topological formulation of Hebbian learning, grounded on two pillars: (1) the minimization of external links within local communities, and (2) the path-based definition of local communities that capture homophilic (similarity-driven) interactions via paths of length 2 and synergetic (diversitydriven) interactions via paths of length 3. Building on this, we introduce the Cannistraci-Hebb Adaptive (CHA) network automata, an adaptive learning machine that automatically selects the optimal CH rule and path length to model each network. CHA unifies theoretical interpretability and data-driven adaptivity, bridging physics-inspired network science and machine intelligence. Across 1,269 networks from 14 domains, CHA consistently surpasses state-of-the-art methods—including SPM, SBM, graph embedding methods, and message-passing graph neural networks—while revealing the mechanistic principles governing link formation. Our code is available at https://github.com/biomedical-cybernetics/Cannistraci_Hebb_network_automata.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated