Preprint
Article

Formation of Sawtooth Wavesfor Cylindrical and Sphericalkortweg-de Vries-Burgers Equations

This version is not peer-reviewed.

Submitted:

22 December 2020

Posted:

23 December 2020

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
For the KdV-Burgers equations on cylindrical and spherical waves the development of a regular profile starting from an equilibrium under a periodic perturbation at the boundary is studied. The equations describe a medium which is both dissipative and dispersive. Symmetries, invariant solutions and conservation laws are investigated. For an appropriate combination of dispersion and dissipation the asymptotic profile looks like a periodical chain of shock fronts with a decreasing amplitude (sawtooth waves). The development of such a profile is preceded by a head shock of a constant height and equal velocity which depends on spatial dimension as well as on integral characteristics of boundary condition; an explicit asymptotic for this head shock and a median of the oscillating part is found.
Keywords: 
;  ;  ;  ;  
Subject: 
Physical Sciences  -   Acoustics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

218

Views

170

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated