Version 1
: Received: 17 December 2020 / Approved: 21 December 2020 / Online: 21 December 2020 (10:26:54 CET)
Version 2
: Received: 23 December 2020 / Approved: 24 December 2020 / Online: 24 December 2020 (13:51:51 CET)
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,3,20]],"date-time":"2023-03-20T07:32:40Z","timestamp":1679297560959},"reference-count":52,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/100008513","name":"Thomas Jefferson University - Center City Campus","doi-asserted-by":"publisher"},{"DOI":"10.13039\/100000060","name":"National Institute of Allergy and Infectious Diseases","doi-asserted-by":"publisher"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Current Opinion in Virology"],"published-print":{"date-parts":[[2021,6]]},"DOI":"10.1016\/j.coviro.2021.03.008","type":"journal-article","created":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T10:42:24Z","timestamp":1619260944000},"page":"65-72","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":43,"title":["Future considerations for the mRNA-lipid nanoparticle vaccine platform"],"prefix":"10.1016","volume":"48","author":[{"given":"Botond Z","family":"Igy\u00e1rt\u00f3","sequence":"first","affiliation":[]},{"given":"Sonya","family":"Jacobsen","sequence":"additional","affiliation":[]},{"given":"Sonia","family":"Ndeupen","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.coviro.2021.03.008_bib0005","series-title":"RNA-Based Vaccines Against Infectious Diseases","author":"Alameh","year":"2020"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0010","doi-asserted-by":"crossref","first-page":"1271","DOI":"10.1016\/j.cell.2020.07.024","article-title":"A thermostable mRNA vaccine against COVID-19","volume":"182","author":"Zhang","year":"2020","journal-title":"Cell"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0015","doi-asserted-by":"crossref","first-page":"1920","DOI":"10.1056\/NEJMoa2022483","article-title":"An mRNA vaccine against SARS-CoV-2 \u2014 preliminary report","volume":"383","author":"Jackson","year":"2020","journal-title":"N Engl J Med"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0020","doi-asserted-by":"crossref","first-page":"594","DOI":"10.1038\/s41586-020-2814-7","article-title":"COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses","volume":"586","author":"Sahin","year":"2020","journal-title":"Nature"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0025","doi-asserted-by":"crossref","first-page":"2439","DOI":"10.1056\/NEJMoa2027906","article-title":"Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates","volume":"383","author":"Walsh","year":"2020","journal-title":"N Engl J Med"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0030","doi-asserted-by":"crossref","first-page":"403","DOI":"10.1056\/NEJMoa2035389","article-title":"Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine","volume":"384","author":"Baden","year":"2021","journal-title":"N Engl J Med"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0035","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/j.addr.2020.06.002","article-title":"Lipid nanoparticles for nucleic acid delivery: current perspectives","volume":"154\u2013155","author":"Samaridou","year":"2020","journal-title":"Adv Drug Deliv Rev"},{"key":"10.1016\/j.coviro.2021.03.008_bib0040","doi-asserted-by":"crossref","first-page":"775","DOI":"10.1016\/j.nano.2013.12.003","article-title":"Cationic lipid nanocarriers activate Toll-like receptor 2 and NLRP3 inflammasome pathways","volume":"10","author":"Lonez","year":"2014","journal-title":"Nanomedicine"},{"key":"10.1016\/j.coviro.2021.03.008_bib0045","doi-asserted-by":"crossref","first-page":"1351","DOI":"10.1002\/eji.200737998","article-title":"DiC14-amidine cationic liposomes stimulate myeloid dendritic cells through toll-like receptor 4","volume":"38","author":"Tanaka","year":"2008","journal-title":"Eur J Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0050","doi-asserted-by":"crossref","first-page":"1749","DOI":"10.1016\/j.addr.2012.05.009","article-title":"Cationic lipids activate intracellular signaling pathways","volume":"64","author":"Lonez","year":"2012","journal-title":"Adv Drug Deliv Rev"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0055","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.nantod.2019.100766","article-title":"Three decades of messenger RNA vaccine development","volume":"28","author":"Verbeke","year":"2019","journal-title":"Nano Today"},{"key":"10.1016\/j.coviro.2021.03.008_bib0060","doi-asserted-by":"crossref","first-page":"1571","DOI":"10.1084\/jem.20171450","article-title":"Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses","volume":"215","author":"Pardi","year":"2018","journal-title":"J Exp Med"},{"key":"10.1016\/j.coviro.2021.03.008_bib0065","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.immuni.2005.06.008","article-title":"Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA","volume":"23","author":"Karik\u00f3","year":"2005","journal-title":"Immunity"},{"key":"10.1016\/j.coviro.2021.03.008_bib0070","article-title":"The mRNA-LNP platform\u2019s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory","author":"Ndeupen","year":"2021","journal-title":"bioRxiv"},{"key":"10.1016\/j.coviro.2021.03.008_bib0075","doi-asserted-by":"crossref","first-page":"355","DOI":"10.1016\/j.chom.2011.04.006","article-title":"Trained immunity: a memory for innate host defense","volume":"9","author":"Netea","year":"2011","journal-title":"Cell Host Microbe"},{"key":"10.1016\/j.coviro.2021.03.008_bib0080","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.tox.2005.07.023","article-title":"Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity","volume":"216","author":"Szebeni","year":"2005","journal-title":"Toxicology"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0085","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.addr.2020.07.024","article-title":"Anti-PEG antibodies: properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals","volume":"154\u2013155","author":"Kozma","year":"2020","journal-title":"Adv Drug Deliv Rev"},{"key":"10.1016\/j.coviro.2021.03.008_bib0090","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.molimm.2014.06.038","article-title":"Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals","volume":"61","author":"Szebeni","year":"2014","journal-title":"Mol Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0095","doi-asserted-by":"crossref","first-page":"345","DOI":"10.1016\/j.jconrel.2015.08.007","article-title":"Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes","volume":"217","author":"Pardi","year":"2015","journal-title":"J Control Release"},{"key":"10.1016\/j.coviro.2021.03.008_bib0100","doi-asserted-by":"crossref","first-page":"1833","DOI":"10.1038\/mt.2008.200","article-title":"Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability","volume":"16","author":"Karik\u00f3","year":"2008","journal-title":"Mol Ther"},{"key":"10.1016\/j.coviro.2021.03.008_bib0105","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1093\/nar\/gkr695","article-title":"Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA","volume":"39","author":"Karik\u00f3","year":"2011","journal-title":"Nucleic Acids Res"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0110","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41467-019-12275-6","article-title":"Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells","volume":"10","author":"Maugeri","year":"2019","journal-title":"Nat Commun"},{"key":"10.1016\/j.coviro.2021.03.008_bib0115","doi-asserted-by":"crossref","first-page":"443","DOI":"10.1146\/annurev-immunol-032712-095910","article-title":"Pathways of antigen processing","volume":"31","author":"Blum","year":"2013","journal-title":"Annu Rev Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0120","doi-asserted-by":"crossref","first-page":"1273","DOI":"10.1056\/NEJMc2102131","article-title":"Delayed large local reactions to mRNA-1273 vaccine against SARS-CoV-2","volume":"384","author":"Blumenthal","year":"2021","journal-title":"N Engl J Med"},{"key":"10.1016\/j.coviro.2021.03.008_bib0125","series-title":"Antibody Fc: Linking Adaptive and Innate Immunity","article-title":"Antibody-Dependent Cellular Cytotoxicity (ADCC)","author":"G\u00f3mez Rom\u00e1n","year":"2013"},{"key":"10.1016\/j.coviro.2021.03.008_bib0130","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1080\/09687860600790537","article-title":"Immunostimulation of dendritic cells by cationic liposomes","volume":"23","author":"Vangasseri","year":"2006","journal-title":"Mol Membr Biol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0135","doi-asserted-by":"crossref","first-page":"2576","DOI":"10.1021\/acs.biochem.9b00402","article-title":"A liposomal platform for delivery of a protein antigen to langerin-expressing cells","volume":"58","author":"Schulze","year":"2019","journal-title":"Biochemistry"},{"key":"10.1016\/j.coviro.2021.03.008_bib0140","first-page":"1","article-title":"Targeting of the C-type lectin receptor langerin using bifunctional mannosylated antigens","volume":"8","author":"Li","year":"2020","journal-title":"Front Cell Dev Biol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0145","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3389\/fimmu.2019.01134","article-title":"DC subsets regulate humoral immune responses by supporting the differentiation of distinct TFH cells","volume":"10","author":"Bouteau","year":"2019","journal-title":"Front Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0150","doi-asserted-by":"crossref","first-page":"424","DOI":"10.1038\/icb.2010.39","article-title":"Targeting of antigens to skin dendritic cells: possibilities to enhance vaccine efficacy","volume":"88","author":"Romani","year":"2010","journal-title":"Immunol Cell Biol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0155","doi-asserted-by":"crossref","first-page":"854","DOI":"10.1002\/eji.201445127","article-title":"Antibodies targeting Clec9A promote strong humoral immunity without adjuvant in mice and non-human primates","volume":"45","author":"Li","year":"2015","journal-title":"Eur J Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0160","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.jconrel.2019.05.032","article-title":"Therapeutic mRNA delivery to leukocytes","volume":"305","author":"Granot-Matok","year":"2019","journal-title":"J Control Release"},{"key":"10.1016\/j.coviro.2021.03.008_bib0165","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1586\/14760584.2014.957684","article-title":"mRNA-based dendritic cell vaccines","volume":"14","author":"Benteyn","year":"2014","journal-title":"Expert Rev Vaccines"},{"key":"10.1016\/j.coviro.2021.03.008_bib0170","first-page":"3707","article-title":"Intracellular routes and selective retention of antigens in mildly acidic cathepsin D\/lysosome-associated membrane protein-1\/MHC class II-positive vesicles in immature dendritic cells","volume":"159","author":"Lutz","year":"1997","journal-title":"J Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0175","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1016\/j.coi.2019.04.003","article-title":"Antigen presentation by dendritic cells for B cell activation","volume":"58","author":"Heath","year":"2019","journal-title":"Curr Opin Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0180","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1007\/s00441-006-0250-0","article-title":"Origin of follicular dendritic cell in the chicken spleen","volume":"327","author":"Igy\u00e1rt\u00f3","year":"2007","journal-title":"Cell Tissue Res"},{"key":"10.1016\/j.coviro.2021.03.008_bib0185","doi-asserted-by":"crossref","first-page":"430","DOI":"10.1002\/eji.201747260","article-title":"\u201cDouble-duty\u201d conventional dendritic cells in the amphibian Xenopus as the prototype for antigen presentation to B cells","volume":"48","author":"Neely","year":"2018","journal-title":"Eur J Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0190","doi-asserted-by":"crossref","first-page":"981","DOI":"10.1038\/ni.f.208","article-title":"Environmental cues, dendritic cells and the programming of tissue-selective lymphocyte trafficking","volume":"9","author":"Sigmundsdottir","year":"2008","journal-title":"Nat Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0195","doi-asserted-by":"crossref","first-page":"18","DOI":"10.3390\/vaccines6020018","article-title":"Harnessing the power of T cells: the promising hope for a universal influenza vaccine","volume":"6","author":"Clemens","year":"2018","journal-title":"Vaccines"},{"key":"10.1016\/j.coviro.2021.03.008_bib0200","doi-asserted-by":"crossref","first-page":"613","DOI":"10.1038\/s41590-019-0320-6","article-title":"Human CD8 + T cell cross-reactivity across influenza A, B and C viruses","volume":"5","author":"Koutsakos","year":"2019","journal-title":"Nat Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0205","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1126\/science.abd3871","article-title":"Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans","volume":"370","author":"Mateus","year":"2020","journal-title":"Science (80-)"},{"key":"10.1016\/j.coviro.2021.03.008_bib0210","doi-asserted-by":"crossref","first-page":"1489","DOI":"10.1016\/j.cell.2020.05.015","article-title":"Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals","volume":"181","author":"Grifoni","year":"2020","journal-title":"Cell"},{"key":"10.1016\/j.coviro.2021.03.008_bib0215","doi-asserted-by":"crossref","first-page":"457","DOI":"10.1038\/s41586-020-2550-z","article-title":"SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls","volume":"584","author":"Le Bert","year":"2020","journal-title":"Nature"},{"key":"10.1016\/j.coviro.2021.03.008_bib0220","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1146\/annurev.immunol.20.083001.084359","article-title":"Innate immune recognition","volume":"20","author":"Janeway","year":"2002","journal-title":"Annu Rev Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0225","series-title":"Immunobiology: The Immune System in Health and Disease","article-title":"Self-tolerance and its loss","author":"Charles","year":"2001"},{"key":"10.1016\/j.coviro.2021.03.008_bib0230","doi-asserted-by":"crossref","first-page":"1387","DOI":"10.1016\/j.jaci.2015.04.001","article-title":"Skin dendritic cells induce follicular helper T cells and protective humoral immune responses","volume":"136","author":"Yao","year":"2015","journal-title":"J Allergy Clin Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0235","first-page":"595","article-title":"Lipid-based colloidal carriers for peptide and protein delivery - liposomes versus lipid nanoparticles","volume":"2","author":"Martins","year":"2007","journal-title":"Int J Nanomedicine"},{"key":"10.1016\/j.coviro.2021.03.008_bib0240","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/srep34215","article-title":"A tetravalent sub-unit dengue vaccine formulated with ionizable cationic lipid nanoparticle induces significant immune responses in rodents and non-human primates","volume":"6","author":"Swaminathan","year":"2016","journal-title":"Sci Rep"},{"key":"10.1016\/j.coviro.2021.03.008_bib0245","doi-asserted-by":"crossref","first-page":"523","DOI":"10.1038\/s41385-020-0334-2","article-title":"A vaccine combination of lipid nanoparticles and a cholera toxin adjuvant derivative greatly improves lung protection against influenza virus infection","volume":"14","author":"Bernasconi","year":"2020","journal-title":"Mucosal Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0250","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3389\/fimmu.2019.03018","article-title":"Lipid nanoparticles potentiate CpG-oligodeoxynucleotide-based vaccine for influenza virus","volume":"10","author":"Shirai","year":"2020","journal-title":"Front Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0255","doi-asserted-by":"crossref","first-page":"2752","DOI":"10.1016\/S0264-410X(02)00191-3","article-title":"Intranasal immunization with recombinant antigens associated with new cationic particles induces strong mucosal as well as systemic antibody and CTL responses","volume":"20","author":"Debin","year":"2002","journal-title":"Vaccine"},{"key":"10.1016\/j.coviro.2021.03.008_bib0260","doi-asserted-by":"crossref","first-page":"110","DOI":"10.1016\/j.vaccine.2015.10.132","article-title":"A novel lipid nanoparticle adjuvant significantly enhances B cell and T cell responses to sub-unit vaccine antigens","volume":"34","author":"Swaminathan","year":"2016","journal-title":"Vaccine"}],"container-title":["Current Opinion in Virology"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1879625721000304?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1879625721000304?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,6,6]],"date-time":"2021-06-06T06:09:41Z","timestamp":1622959781000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1879625721000304"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6]]},"references-count":52,"alternative-id":["S1879625721000304"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.coviro.2021.03.008","relation":{},"ISSN":["1879-6257"],"issn-type":[{"value":"1879-6257","type":"print"}],"subject":["Virology"],"published":{"date-parts":[[2021,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Future considerations for the mRNA-lipid nanoparticle vaccine platform","name":"articletitle","label":"Article Title"},{"value":"Current Opinion in Virology","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.coviro.2021.03.008","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,3,20]],"date-time":"2023-03-20T07:32:40Z","timestamp":1679297560959},"reference-count":52,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/100008513","name":"Thomas Jefferson University - Center City Campus","doi-asserted-by":"publisher"},{"DOI":"10.13039\/100000060","name":"National Institute of Allergy and Infectious Diseases","doi-asserted-by":"publisher"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Current Opinion in Virology"],"published-print":{"date-parts":[[2021,6]]},"DOI":"10.1016\/j.coviro.2021.03.008","type":"journal-article","created":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T10:42:24Z","timestamp":1619260944000},"page":"65-72","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":43,"title":["Future considerations for the mRNA-lipid nanoparticle vaccine platform"],"prefix":"10.1016","volume":"48","author":[{"given":"Botond Z","family":"Igy\u00e1rt\u00f3","sequence":"first","affiliation":[]},{"given":"Sonya","family":"Jacobsen","sequence":"additional","affiliation":[]},{"given":"Sonia","family":"Ndeupen","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.coviro.2021.03.008_bib0005","series-title":"RNA-Based Vaccines Against Infectious Diseases","author":"Alameh","year":"2020"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0010","doi-asserted-by":"crossref","first-page":"1271","DOI":"10.1016\/j.cell.2020.07.024","article-title":"A thermostable mRNA vaccine against COVID-19","volume":"182","author":"Zhang","year":"2020","journal-title":"Cell"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0015","doi-asserted-by":"crossref","first-page":"1920","DOI":"10.1056\/NEJMoa2022483","article-title":"An mRNA vaccine against SARS-CoV-2 \u2014 preliminary report","volume":"383","author":"Jackson","year":"2020","journal-title":"N Engl J Med"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0020","doi-asserted-by":"crossref","first-page":"594","DOI":"10.1038\/s41586-020-2814-7","article-title":"COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses","volume":"586","author":"Sahin","year":"2020","journal-title":"Nature"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0025","doi-asserted-by":"crossref","first-page":"2439","DOI":"10.1056\/NEJMoa2027906","article-title":"Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates","volume":"383","author":"Walsh","year":"2020","journal-title":"N Engl J Med"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0030","doi-asserted-by":"crossref","first-page":"403","DOI":"10.1056\/NEJMoa2035389","article-title":"Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine","volume":"384","author":"Baden","year":"2021","journal-title":"N Engl J Med"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0035","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/j.addr.2020.06.002","article-title":"Lipid nanoparticles for nucleic acid delivery: current perspectives","volume":"154\u2013155","author":"Samaridou","year":"2020","journal-title":"Adv Drug Deliv Rev"},{"key":"10.1016\/j.coviro.2021.03.008_bib0040","doi-asserted-by":"crossref","first-page":"775","DOI":"10.1016\/j.nano.2013.12.003","article-title":"Cationic lipid nanocarriers activate Toll-like receptor 2 and NLRP3 inflammasome pathways","volume":"10","author":"Lonez","year":"2014","journal-title":"Nanomedicine"},{"key":"10.1016\/j.coviro.2021.03.008_bib0045","doi-asserted-by":"crossref","first-page":"1351","DOI":"10.1002\/eji.200737998","article-title":"DiC14-amidine cationic liposomes stimulate myeloid dendritic cells through toll-like receptor 4","volume":"38","author":"Tanaka","year":"2008","journal-title":"Eur J Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0050","doi-asserted-by":"crossref","first-page":"1749","DOI":"10.1016\/j.addr.2012.05.009","article-title":"Cationic lipids activate intracellular signaling pathways","volume":"64","author":"Lonez","year":"2012","journal-title":"Adv Drug Deliv Rev"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0055","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.nantod.2019.100766","article-title":"Three decades of messenger RNA vaccine development","volume":"28","author":"Verbeke","year":"2019","journal-title":"Nano Today"},{"key":"10.1016\/j.coviro.2021.03.008_bib0060","doi-asserted-by":"crossref","first-page":"1571","DOI":"10.1084\/jem.20171450","article-title":"Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses","volume":"215","author":"Pardi","year":"2018","journal-title":"J Exp Med"},{"key":"10.1016\/j.coviro.2021.03.008_bib0065","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.immuni.2005.06.008","article-title":"Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA","volume":"23","author":"Karik\u00f3","year":"2005","journal-title":"Immunity"},{"key":"10.1016\/j.coviro.2021.03.008_bib0070","article-title":"The mRNA-LNP platform\u2019s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory","author":"Ndeupen","year":"2021","journal-title":"bioRxiv"},{"key":"10.1016\/j.coviro.2021.03.008_bib0075","doi-asserted-by":"crossref","first-page":"355","DOI":"10.1016\/j.chom.2011.04.006","article-title":"Trained immunity: a memory for innate host defense","volume":"9","author":"Netea","year":"2011","journal-title":"Cell Host Microbe"},{"key":"10.1016\/j.coviro.2021.03.008_bib0080","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.tox.2005.07.023","article-title":"Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity","volume":"216","author":"Szebeni","year":"2005","journal-title":"Toxicology"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0085","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.addr.2020.07.024","article-title":"Anti-PEG antibodies: properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals","volume":"154\u2013155","author":"Kozma","year":"2020","journal-title":"Adv Drug Deliv Rev"},{"key":"10.1016\/j.coviro.2021.03.008_bib0090","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.molimm.2014.06.038","article-title":"Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals","volume":"61","author":"Szebeni","year":"2014","journal-title":"Mol Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0095","doi-asserted-by":"crossref","first-page":"345","DOI":"10.1016\/j.jconrel.2015.08.007","article-title":"Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes","volume":"217","author":"Pardi","year":"2015","journal-title":"J Control Release"},{"key":"10.1016\/j.coviro.2021.03.008_bib0100","doi-asserted-by":"crossref","first-page":"1833","DOI":"10.1038\/mt.2008.200","article-title":"Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability","volume":"16","author":"Karik\u00f3","year":"2008","journal-title":"Mol Ther"},{"key":"10.1016\/j.coviro.2021.03.008_bib0105","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1093\/nar\/gkr695","article-title":"Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA","volume":"39","author":"Karik\u00f3","year":"2011","journal-title":"Nucleic Acids Res"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0110","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41467-019-12275-6","article-title":"Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells","volume":"10","author":"Maugeri","year":"2019","journal-title":"Nat Commun"},{"key":"10.1016\/j.coviro.2021.03.008_bib0115","doi-asserted-by":"crossref","first-page":"443","DOI":"10.1146\/annurev-immunol-032712-095910","article-title":"Pathways of antigen processing","volume":"31","author":"Blum","year":"2013","journal-title":"Annu Rev Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0120","doi-asserted-by":"crossref","first-page":"1273","DOI":"10.1056\/NEJMc2102131","article-title":"Delayed large local reactions to mRNA-1273 vaccine against SARS-CoV-2","volume":"384","author":"Blumenthal","year":"2021","journal-title":"N Engl J Med"},{"key":"10.1016\/j.coviro.2021.03.008_bib0125","series-title":"Antibody Fc: Linking Adaptive and Innate Immunity","article-title":"Antibody-Dependent Cellular Cytotoxicity (ADCC)","author":"G\u00f3mez Rom\u00e1n","year":"2013"},{"key":"10.1016\/j.coviro.2021.03.008_bib0130","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1080\/09687860600790537","article-title":"Immunostimulation of dendritic cells by cationic liposomes","volume":"23","author":"Vangasseri","year":"2006","journal-title":"Mol Membr Biol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0135","doi-asserted-by":"crossref","first-page":"2576","DOI":"10.1021\/acs.biochem.9b00402","article-title":"A liposomal platform for delivery of a protein antigen to langerin-expressing cells","volume":"58","author":"Schulze","year":"2019","journal-title":"Biochemistry"},{"key":"10.1016\/j.coviro.2021.03.008_bib0140","first-page":"1","article-title":"Targeting of the C-type lectin receptor langerin using bifunctional mannosylated antigens","volume":"8","author":"Li","year":"2020","journal-title":"Front Cell Dev Biol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0145","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3389\/fimmu.2019.01134","article-title":"DC subsets regulate humoral immune responses by supporting the differentiation of distinct TFH cells","volume":"10","author":"Bouteau","year":"2019","journal-title":"Front Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0150","doi-asserted-by":"crossref","first-page":"424","DOI":"10.1038\/icb.2010.39","article-title":"Targeting of antigens to skin dendritic cells: possibilities to enhance vaccine efficacy","volume":"88","author":"Romani","year":"2010","journal-title":"Immunol Cell Biol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0155","doi-asserted-by":"crossref","first-page":"854","DOI":"10.1002\/eji.201445127","article-title":"Antibodies targeting Clec9A promote strong humoral immunity without adjuvant in mice and non-human primates","volume":"45","author":"Li","year":"2015","journal-title":"Eur J Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0160","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.jconrel.2019.05.032","article-title":"Therapeutic mRNA delivery to leukocytes","volume":"305","author":"Granot-Matok","year":"2019","journal-title":"J Control Release"},{"key":"10.1016\/j.coviro.2021.03.008_bib0165","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1586\/14760584.2014.957684","article-title":"mRNA-based dendritic cell vaccines","volume":"14","author":"Benteyn","year":"2014","journal-title":"Expert Rev Vaccines"},{"key":"10.1016\/j.coviro.2021.03.008_bib0170","first-page":"3707","article-title":"Intracellular routes and selective retention of antigens in mildly acidic cathepsin D\/lysosome-associated membrane protein-1\/MHC class II-positive vesicles in immature dendritic cells","volume":"159","author":"Lutz","year":"1997","journal-title":"J Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0175","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1016\/j.coi.2019.04.003","article-title":"Antigen presentation by dendritic cells for B cell activation","volume":"58","author":"Heath","year":"2019","journal-title":"Curr Opin Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0180","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1007\/s00441-006-0250-0","article-title":"Origin of follicular dendritic cell in the chicken spleen","volume":"327","author":"Igy\u00e1rt\u00f3","year":"2007","journal-title":"Cell Tissue Res"},{"key":"10.1016\/j.coviro.2021.03.008_bib0185","doi-asserted-by":"crossref","first-page":"430","DOI":"10.1002\/eji.201747260","article-title":"\u201cDouble-duty\u201d conventional dendritic cells in the amphibian Xenopus as the prototype for antigen presentation to B cells","volume":"48","author":"Neely","year":"2018","journal-title":"Eur J Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0190","doi-asserted-by":"crossref","first-page":"981","DOI":"10.1038\/ni.f.208","article-title":"Environmental cues, dendritic cells and the programming of tissue-selective lymphocyte trafficking","volume":"9","author":"Sigmundsdottir","year":"2008","journal-title":"Nat Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0195","doi-asserted-by":"crossref","first-page":"18","DOI":"10.3390\/vaccines6020018","article-title":"Harnessing the power of T cells: the promising hope for a universal influenza vaccine","volume":"6","author":"Clemens","year":"2018","journal-title":"Vaccines"},{"key":"10.1016\/j.coviro.2021.03.008_bib0200","doi-asserted-by":"crossref","first-page":"613","DOI":"10.1038\/s41590-019-0320-6","article-title":"Human CD8 + T cell cross-reactivity across influenza A, B and C viruses","volume":"5","author":"Koutsakos","year":"2019","journal-title":"Nat Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0205","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1126\/science.abd3871","article-title":"Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans","volume":"370","author":"Mateus","year":"2020","journal-title":"Science (80-)"},{"key":"10.1016\/j.coviro.2021.03.008_bib0210","doi-asserted-by":"crossref","first-page":"1489","DOI":"10.1016\/j.cell.2020.05.015","article-title":"Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals","volume":"181","author":"Grifoni","year":"2020","journal-title":"Cell"},{"key":"10.1016\/j.coviro.2021.03.008_bib0215","doi-asserted-by":"crossref","first-page":"457","DOI":"10.1038\/s41586-020-2550-z","article-title":"SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls","volume":"584","author":"Le Bert","year":"2020","journal-title":"Nature"},{"key":"10.1016\/j.coviro.2021.03.008_bib0220","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1146\/annurev.immunol.20.083001.084359","article-title":"Innate immune recognition","volume":"20","author":"Janeway","year":"2002","journal-title":"Annu Rev Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0225","series-title":"Immunobiology: The Immune System in Health and Disease","article-title":"Self-tolerance and its loss","author":"Charles","year":"2001"},{"key":"10.1016\/j.coviro.2021.03.008_bib0230","doi-asserted-by":"crossref","first-page":"1387","DOI":"10.1016\/j.jaci.2015.04.001","article-title":"Skin dendritic cells induce follicular helper T cells and protective humoral immune responses","volume":"136","author":"Yao","year":"2015","journal-title":"J Allergy Clin Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0235","first-page":"595","article-title":"Lipid-based colloidal carriers for peptide and protein delivery - liposomes versus lipid nanoparticles","volume":"2","author":"Martins","year":"2007","journal-title":"Int J Nanomedicine"},{"key":"10.1016\/j.coviro.2021.03.008_bib0240","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/srep34215","article-title":"A tetravalent sub-unit dengue vaccine formulated with ionizable cationic lipid nanoparticle induces significant immune responses in rodents and non-human primates","volume":"6","author":"Swaminathan","year":"2016","journal-title":"Sci Rep"},{"key":"10.1016\/j.coviro.2021.03.008_bib0245","doi-asserted-by":"crossref","first-page":"523","DOI":"10.1038\/s41385-020-0334-2","article-title":"A vaccine combination of lipid nanoparticles and a cholera toxin adjuvant derivative greatly improves lung protection against influenza virus infection","volume":"14","author":"Bernasconi","year":"2020","journal-title":"Mucosal Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0250","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3389\/fimmu.2019.03018","article-title":"Lipid nanoparticles potentiate CpG-oligodeoxynucleotide-based vaccine for influenza virus","volume":"10","author":"Shirai","year":"2020","journal-title":"Front Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0255","doi-asserted-by":"crossref","first-page":"2752","DOI":"10.1016\/S0264-410X(02)00191-3","article-title":"Intranasal immunization with recombinant antigens associated with new cationic particles induces strong mucosal as well as systemic antibody and CTL responses","volume":"20","author":"Debin","year":"2002","journal-title":"Vaccine"},{"key":"10.1016\/j.coviro.2021.03.008_bib0260","doi-asserted-by":"crossref","first-page":"110","DOI":"10.1016\/j.vaccine.2015.10.132","article-title":"A novel lipid nanoparticle adjuvant significantly enhances B cell and T cell responses to sub-unit vaccine antigens","volume":"34","author":"Swaminathan","year":"2016","journal-title":"Vaccine"}],"container-title":["Current Opinion in Virology"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1879625721000304?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1879625721000304?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,6,6]],"date-time":"2021-06-06T06:09:41Z","timestamp":1622959781000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1879625721000304"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6]]},"references-count":52,"alternative-id":["S1879625721000304"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.coviro.2021.03.008","relation":{},"ISSN":["1879-6257"],"issn-type":[{"value":"1879-6257","type":"print"}],"subject":["Virology"],"published":{"date-parts":[[2021,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Future considerations for the mRNA-lipid nanoparticle vaccine platform","name":"articletitle","label":"Article Title"},{"value":"Current Opinion in Virology","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.coviro.2021.03.008","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,3,20]],"date-time":"2023-03-20T07:32:40Z","timestamp":1679297560959},"reference-count":52,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/100008513","name":"Thomas Jefferson University - Center City Campus","doi-asserted-by":"publisher"},{"DOI":"10.13039\/100000060","name":"National Institute of Allergy and Infectious Diseases","doi-asserted-by":"publisher"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Current Opinion in Virology"],"published-print":{"date-parts":[[2021,6]]},"DOI":"10.1016\/j.coviro.2021.03.008","type":"journal-article","created":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T10:42:24Z","timestamp":1619260944000},"page":"65-72","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":43,"title":["Future considerations for the mRNA-lipid nanoparticle vaccine platform"],"prefix":"10.1016","volume":"48","author":[{"given":"Botond Z","family":"Igy\u00e1rt\u00f3","sequence":"first","affiliation":[]},{"given":"Sonya","family":"Jacobsen","sequence":"additional","affiliation":[]},{"given":"Sonia","family":"Ndeupen","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.coviro.2021.03.008_bib0005","series-title":"RNA-Based Vaccines Against Infectious Diseases","author":"Alameh","year":"2020"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0010","doi-asserted-by":"crossref","first-page":"1271","DOI":"10.1016\/j.cell.2020.07.024","article-title":"A thermostable mRNA vaccine against COVID-19","volume":"182","author":"Zhang","year":"2020","journal-title":"Cell"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0015","doi-asserted-by":"crossref","first-page":"1920","DOI":"10.1056\/NEJMoa2022483","article-title":"An mRNA vaccine against SARS-CoV-2 \u2014 preliminary report","volume":"383","author":"Jackson","year":"2020","journal-title":"N Engl J Med"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0020","doi-asserted-by":"crossref","first-page":"594","DOI":"10.1038\/s41586-020-2814-7","article-title":"COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses","volume":"586","author":"Sahin","year":"2020","journal-title":"Nature"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0025","doi-asserted-by":"crossref","first-page":"2439","DOI":"10.1056\/NEJMoa2027906","article-title":"Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates","volume":"383","author":"Walsh","year":"2020","journal-title":"N Engl J Med"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0030","doi-asserted-by":"crossref","first-page":"403","DOI":"10.1056\/NEJMoa2035389","article-title":"Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine","volume":"384","author":"Baden","year":"2021","journal-title":"N Engl J Med"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0035","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/j.addr.2020.06.002","article-title":"Lipid nanoparticles for nucleic acid delivery: current perspectives","volume":"154\u2013155","author":"Samaridou","year":"2020","journal-title":"Adv Drug Deliv Rev"},{"key":"10.1016\/j.coviro.2021.03.008_bib0040","doi-asserted-by":"crossref","first-page":"775","DOI":"10.1016\/j.nano.2013.12.003","article-title":"Cationic lipid nanocarriers activate Toll-like receptor 2 and NLRP3 inflammasome pathways","volume":"10","author":"Lonez","year":"2014","journal-title":"Nanomedicine"},{"key":"10.1016\/j.coviro.2021.03.008_bib0045","doi-asserted-by":"crossref","first-page":"1351","DOI":"10.1002\/eji.200737998","article-title":"DiC14-amidine cationic liposomes stimulate myeloid dendritic cells through toll-like receptor 4","volume":"38","author":"Tanaka","year":"2008","journal-title":"Eur J Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0050","doi-asserted-by":"crossref","first-page":"1749","DOI":"10.1016\/j.addr.2012.05.009","article-title":"Cationic lipids activate intracellular signaling pathways","volume":"64","author":"Lonez","year":"2012","journal-title":"Adv Drug Deliv Rev"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0055","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.nantod.2019.100766","article-title":"Three decades of messenger RNA vaccine development","volume":"28","author":"Verbeke","year":"2019","journal-title":"Nano Today"},{"key":"10.1016\/j.coviro.2021.03.008_bib0060","doi-asserted-by":"crossref","first-page":"1571","DOI":"10.1084\/jem.20171450","article-title":"Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses","volume":"215","author":"Pardi","year":"2018","journal-title":"J Exp Med"},{"key":"10.1016\/j.coviro.2021.03.008_bib0065","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.immuni.2005.06.008","article-title":"Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA","volume":"23","author":"Karik\u00f3","year":"2005","journal-title":"Immunity"},{"key":"10.1016\/j.coviro.2021.03.008_bib0070","article-title":"The mRNA-LNP platform\u2019s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory","author":"Ndeupen","year":"2021","journal-title":"bioRxiv"},{"key":"10.1016\/j.coviro.2021.03.008_bib0075","doi-asserted-by":"crossref","first-page":"355","DOI":"10.1016\/j.chom.2011.04.006","article-title":"Trained immunity: a memory for innate host defense","volume":"9","author":"Netea","year":"2011","journal-title":"Cell Host Microbe"},{"key":"10.1016\/j.coviro.2021.03.008_bib0080","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.tox.2005.07.023","article-title":"Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity","volume":"216","author":"Szebeni","year":"2005","journal-title":"Toxicology"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0085","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.addr.2020.07.024","article-title":"Anti-PEG antibodies: properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals","volume":"154\u2013155","author":"Kozma","year":"2020","journal-title":"Adv Drug Deliv Rev"},{"key":"10.1016\/j.coviro.2021.03.008_bib0090","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.molimm.2014.06.038","article-title":"Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals","volume":"61","author":"Szebeni","year":"2014","journal-title":"Mol Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0095","doi-asserted-by":"crossref","first-page":"345","DOI":"10.1016\/j.jconrel.2015.08.007","article-title":"Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes","volume":"217","author":"Pardi","year":"2015","journal-title":"J Control Release"},{"key":"10.1016\/j.coviro.2021.03.008_bib0100","doi-asserted-by":"crossref","first-page":"1833","DOI":"10.1038\/mt.2008.200","article-title":"Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability","volume":"16","author":"Karik\u00f3","year":"2008","journal-title":"Mol Ther"},{"key":"10.1016\/j.coviro.2021.03.008_bib0105","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1093\/nar\/gkr695","article-title":"Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA","volume":"39","author":"Karik\u00f3","year":"2011","journal-title":"Nucleic Acids Res"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0110","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41467-019-12275-6","article-title":"Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells","volume":"10","author":"Maugeri","year":"2019","journal-title":"Nat Commun"},{"key":"10.1016\/j.coviro.2021.03.008_bib0115","doi-asserted-by":"crossref","first-page":"443","DOI":"10.1146\/annurev-immunol-032712-095910","article-title":"Pathways of antigen processing","volume":"31","author":"Blum","year":"2013","journal-title":"Annu Rev Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0120","doi-asserted-by":"crossref","first-page":"1273","DOI":"10.1056\/NEJMc2102131","article-title":"Delayed large local reactions to mRNA-1273 vaccine against SARS-CoV-2","volume":"384","author":"Blumenthal","year":"2021","journal-title":"N Engl J Med"},{"key":"10.1016\/j.coviro.2021.03.008_bib0125","series-title":"Antibody Fc: Linking Adaptive and Innate Immunity","article-title":"Antibody-Dependent Cellular Cytotoxicity (ADCC)","author":"G\u00f3mez Rom\u00e1n","year":"2013"},{"key":"10.1016\/j.coviro.2021.03.008_bib0130","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1080\/09687860600790537","article-title":"Immunostimulation of dendritic cells by cationic liposomes","volume":"23","author":"Vangasseri","year":"2006","journal-title":"Mol Membr Biol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0135","doi-asserted-by":"crossref","first-page":"2576","DOI":"10.1021\/acs.biochem.9b00402","article-title":"A liposomal platform for delivery of a protein antigen to langerin-expressing cells","volume":"58","author":"Schulze","year":"2019","journal-title":"Biochemistry"},{"key":"10.1016\/j.coviro.2021.03.008_bib0140","first-page":"1","article-title":"Targeting of the C-type lectin receptor langerin using bifunctional mannosylated antigens","volume":"8","author":"Li","year":"2020","journal-title":"Front Cell Dev Biol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0145","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3389\/fimmu.2019.01134","article-title":"DC subsets regulate humoral immune responses by supporting the differentiation of distinct TFH cells","volume":"10","author":"Bouteau","year":"2019","journal-title":"Front Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0150","doi-asserted-by":"crossref","first-page":"424","DOI":"10.1038\/icb.2010.39","article-title":"Targeting of antigens to skin dendritic cells: possibilities to enhance vaccine efficacy","volume":"88","author":"Romani","year":"2010","journal-title":"Immunol Cell Biol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0155","doi-asserted-by":"crossref","first-page":"854","DOI":"10.1002\/eji.201445127","article-title":"Antibodies targeting Clec9A promote strong humoral immunity without adjuvant in mice and non-human primates","volume":"45","author":"Li","year":"2015","journal-title":"Eur J Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0160","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.jconrel.2019.05.032","article-title":"Therapeutic mRNA delivery to leukocytes","volume":"305","author":"Granot-Matok","year":"2019","journal-title":"J Control Release"},{"key":"10.1016\/j.coviro.2021.03.008_bib0165","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1586\/14760584.2014.957684","article-title":"mRNA-based dendritic cell vaccines","volume":"14","author":"Benteyn","year":"2014","journal-title":"Expert Rev Vaccines"},{"key":"10.1016\/j.coviro.2021.03.008_bib0170","first-page":"3707","article-title":"Intracellular routes and selective retention of antigens in mildly acidic cathepsin D\/lysosome-associated membrane protein-1\/MHC class II-positive vesicles in immature dendritic cells","volume":"159","author":"Lutz","year":"1997","journal-title":"J Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0175","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1016\/j.coi.2019.04.003","article-title":"Antigen presentation by dendritic cells for B cell activation","volume":"58","author":"Heath","year":"2019","journal-title":"Curr Opin Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0180","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1007\/s00441-006-0250-0","article-title":"Origin of follicular dendritic cell in the chicken spleen","volume":"327","author":"Igy\u00e1rt\u00f3","year":"2007","journal-title":"Cell Tissue Res"},{"key":"10.1016\/j.coviro.2021.03.008_bib0185","doi-asserted-by":"crossref","first-page":"430","DOI":"10.1002\/eji.201747260","article-title":"\u201cDouble-duty\u201d conventional dendritic cells in the amphibian Xenopus as the prototype for antigen presentation to B cells","volume":"48","author":"Neely","year":"2018","journal-title":"Eur J Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0190","doi-asserted-by":"crossref","first-page":"981","DOI":"10.1038\/ni.f.208","article-title":"Environmental cues, dendritic cells and the programming of tissue-selective lymphocyte trafficking","volume":"9","author":"Sigmundsdottir","year":"2008","journal-title":"Nat Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0195","doi-asserted-by":"crossref","first-page":"18","DOI":"10.3390\/vaccines6020018","article-title":"Harnessing the power of T cells: the promising hope for a universal influenza vaccine","volume":"6","author":"Clemens","year":"2018","journal-title":"Vaccines"},{"key":"10.1016\/j.coviro.2021.03.008_bib0200","doi-asserted-by":"crossref","first-page":"613","DOI":"10.1038\/s41590-019-0320-6","article-title":"Human CD8 + T cell cross-reactivity across influenza A, B and C viruses","volume":"5","author":"Koutsakos","year":"2019","journal-title":"Nat Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0205","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1126\/science.abd3871","article-title":"Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans","volume":"370","author":"Mateus","year":"2020","journal-title":"Science (80-)"},{"key":"10.1016\/j.coviro.2021.03.008_bib0210","doi-asserted-by":"crossref","first-page":"1489","DOI":"10.1016\/j.cell.2020.05.015","article-title":"Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals","volume":"181","author":"Grifoni","year":"2020","journal-title":"Cell"},{"key":"10.1016\/j.coviro.2021.03.008_bib0215","doi-asserted-by":"crossref","first-page":"457","DOI":"10.1038\/s41586-020-2550-z","article-title":"SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls","volume":"584","author":"Le Bert","year":"2020","journal-title":"Nature"},{"key":"10.1016\/j.coviro.2021.03.008_bib0220","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1146\/annurev.immunol.20.083001.084359","article-title":"Innate immune recognition","volume":"20","author":"Janeway","year":"2002","journal-title":"Annu Rev Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0225","series-title":"Immunobiology: The Immune System in Health and Disease","article-title":"Self-tolerance and its loss","author":"Charles","year":"2001"},{"key":"10.1016\/j.coviro.2021.03.008_bib0230","doi-asserted-by":"crossref","first-page":"1387","DOI":"10.1016\/j.jaci.2015.04.001","article-title":"Skin dendritic cells induce follicular helper T cells and protective humoral immune responses","volume":"136","author":"Yao","year":"2015","journal-title":"J Allergy Clin Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0235","first-page":"595","article-title":"Lipid-based colloidal carriers for peptide and protein delivery - liposomes versus lipid nanoparticles","volume":"2","author":"Martins","year":"2007","journal-title":"Int J Nanomedicine"},{"key":"10.1016\/j.coviro.2021.03.008_bib0240","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/srep34215","article-title":"A tetravalent sub-unit dengue vaccine formulated with ionizable cationic lipid nanoparticle induces significant immune responses in rodents and non-human primates","volume":"6","author":"Swaminathan","year":"2016","journal-title":"Sci Rep"},{"key":"10.1016\/j.coviro.2021.03.008_bib0245","doi-asserted-by":"crossref","first-page":"523","DOI":"10.1038\/s41385-020-0334-2","article-title":"A vaccine combination of lipid nanoparticles and a cholera toxin adjuvant derivative greatly improves lung protection against influenza virus infection","volume":"14","author":"Bernasconi","year":"2020","journal-title":"Mucosal Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0250","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3389\/fimmu.2019.03018","article-title":"Lipid nanoparticles potentiate CpG-oligodeoxynucleotide-based vaccine for influenza virus","volume":"10","author":"Shirai","year":"2020","journal-title":"Front Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0255","doi-asserted-by":"crossref","first-page":"2752","DOI":"10.1016\/S0264-410X(02)00191-3","article-title":"Intranasal immunization with recombinant antigens associated with new cationic particles induces strong mucosal as well as systemic antibody and CTL responses","volume":"20","author":"Debin","year":"2002","journal-title":"Vaccine"},{"key":"10.1016\/j.coviro.2021.03.008_bib0260","doi-asserted-by":"crossref","first-page":"110","DOI":"10.1016\/j.vaccine.2015.10.132","article-title":"A novel lipid nanoparticle adjuvant significantly enhances B cell and T cell responses to sub-unit vaccine antigens","volume":"34","author":"Swaminathan","year":"2016","journal-title":"Vaccine"}],"container-title":["Current Opinion in Virology"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1879625721000304?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1879625721000304?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,6,6]],"date-time":"2021-06-06T06:09:41Z","timestamp":1622959781000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1879625721000304"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6]]},"references-count":52,"alternative-id":["S1879625721000304"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.coviro.2021.03.008","relation":{},"ISSN":["1879-6257"],"issn-type":[{"value":"1879-6257","type":"print"}],"subject":["Virology"],"published":{"date-parts":[[2021,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Future considerations for the mRNA-lipid nanoparticle vaccine platform","name":"articletitle","label":"Article Title"},{"value":"Current Opinion in Virology","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.coviro.2021.03.008","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,3,20]],"date-time":"2023-03-20T07:32:40Z","timestamp":1679297560959},"reference-count":52,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/100008513","name":"Thomas Jefferson University - Center City Campus","doi-asserted-by":"publisher"},{"DOI":"10.13039\/100000060","name":"National Institute of Allergy and Infectious Diseases","doi-asserted-by":"publisher"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Current Opinion in Virology"],"published-print":{"date-parts":[[2021,6]]},"DOI":"10.1016\/j.coviro.2021.03.008","type":"journal-article","created":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T10:42:24Z","timestamp":1619260944000},"page":"65-72","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":43,"title":["Future considerations for the mRNA-lipid nanoparticle vaccine platform"],"prefix":"10.1016","volume":"48","author":[{"given":"Botond Z","family":"Igy\u00e1rt\u00f3","sequence":"first","affiliation":[]},{"given":"Sonya","family":"Jacobsen","sequence":"additional","affiliation":[]},{"given":"Sonia","family":"Ndeupen","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.coviro.2021.03.008_bib0005","series-title":"RNA-Based Vaccines Against Infectious Diseases","author":"Alameh","year":"2020"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0010","doi-asserted-by":"crossref","first-page":"1271","DOI":"10.1016\/j.cell.2020.07.024","article-title":"A thermostable mRNA vaccine against COVID-19","volume":"182","author":"Zhang","year":"2020","journal-title":"Cell"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0015","doi-asserted-by":"crossref","first-page":"1920","DOI":"10.1056\/NEJMoa2022483","article-title":"An mRNA vaccine against SARS-CoV-2 \u2014 preliminary report","volume":"383","author":"Jackson","year":"2020","journal-title":"N Engl J Med"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0020","doi-asserted-by":"crossref","first-page":"594","DOI":"10.1038\/s41586-020-2814-7","article-title":"COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses","volume":"586","author":"Sahin","year":"2020","journal-title":"Nature"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0025","doi-asserted-by":"crossref","first-page":"2439","DOI":"10.1056\/NEJMoa2027906","article-title":"Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates","volume":"383","author":"Walsh","year":"2020","journal-title":"N Engl J Med"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0030","doi-asserted-by":"crossref","first-page":"403","DOI":"10.1056\/NEJMoa2035389","article-title":"Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine","volume":"384","author":"Baden","year":"2021","journal-title":"N Engl J Med"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0035","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/j.addr.2020.06.002","article-title":"Lipid nanoparticles for nucleic acid delivery: current perspectives","volume":"154\u2013155","author":"Samaridou","year":"2020","journal-title":"Adv Drug Deliv Rev"},{"key":"10.1016\/j.coviro.2021.03.008_bib0040","doi-asserted-by":"crossref","first-page":"775","DOI":"10.1016\/j.nano.2013.12.003","article-title":"Cationic lipid nanocarriers activate Toll-like receptor 2 and NLRP3 inflammasome pathways","volume":"10","author":"Lonez","year":"2014","journal-title":"Nanomedicine"},{"key":"10.1016\/j.coviro.2021.03.008_bib0045","doi-asserted-by":"crossref","first-page":"1351","DOI":"10.1002\/eji.200737998","article-title":"DiC14-amidine cationic liposomes stimulate myeloid dendritic cells through toll-like receptor 4","volume":"38","author":"Tanaka","year":"2008","journal-title":"Eur J Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0050","doi-asserted-by":"crossref","first-page":"1749","DOI":"10.1016\/j.addr.2012.05.009","article-title":"Cationic lipids activate intracellular signaling pathways","volume":"64","author":"Lonez","year":"2012","journal-title":"Adv Drug Deliv Rev"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0055","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.nantod.2019.100766","article-title":"Three decades of messenger RNA vaccine development","volume":"28","author":"Verbeke","year":"2019","journal-title":"Nano Today"},{"key":"10.1016\/j.coviro.2021.03.008_bib0060","doi-asserted-by":"crossref","first-page":"1571","DOI":"10.1084\/jem.20171450","article-title":"Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses","volume":"215","author":"Pardi","year":"2018","journal-title":"J Exp Med"},{"key":"10.1016\/j.coviro.2021.03.008_bib0065","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.immuni.2005.06.008","article-title":"Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA","volume":"23","author":"Karik\u00f3","year":"2005","journal-title":"Immunity"},{"key":"10.1016\/j.coviro.2021.03.008_bib0070","article-title":"The mRNA-LNP platform\u2019s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory","author":"Ndeupen","year":"2021","journal-title":"bioRxiv"},{"key":"10.1016\/j.coviro.2021.03.008_bib0075","doi-asserted-by":"crossref","first-page":"355","DOI":"10.1016\/j.chom.2011.04.006","article-title":"Trained immunity: a memory for innate host defense","volume":"9","author":"Netea","year":"2011","journal-title":"Cell Host Microbe"},{"key":"10.1016\/j.coviro.2021.03.008_bib0080","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.tox.2005.07.023","article-title":"Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity","volume":"216","author":"Szebeni","year":"2005","journal-title":"Toxicology"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0085","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.addr.2020.07.024","article-title":"Anti-PEG antibodies: properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals","volume":"154\u2013155","author":"Kozma","year":"2020","journal-title":"Adv Drug Deliv Rev"},{"key":"10.1016\/j.coviro.2021.03.008_bib0090","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.molimm.2014.06.038","article-title":"Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals","volume":"61","author":"Szebeni","year":"2014","journal-title":"Mol Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0095","doi-asserted-by":"crossref","first-page":"345","DOI":"10.1016\/j.jconrel.2015.08.007","article-title":"Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes","volume":"217","author":"Pardi","year":"2015","journal-title":"J Control Release"},{"key":"10.1016\/j.coviro.2021.03.008_bib0100","doi-asserted-by":"crossref","first-page":"1833","DOI":"10.1038\/mt.2008.200","article-title":"Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability","volume":"16","author":"Karik\u00f3","year":"2008","journal-title":"Mol Ther"},{"key":"10.1016\/j.coviro.2021.03.008_bib0105","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1093\/nar\/gkr695","article-title":"Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA","volume":"39","author":"Karik\u00f3","year":"2011","journal-title":"Nucleic Acids Res"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0110","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41467-019-12275-6","article-title":"Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells","volume":"10","author":"Maugeri","year":"2019","journal-title":"Nat Commun"},{"key":"10.1016\/j.coviro.2021.03.008_bib0115","doi-asserted-by":"crossref","first-page":"443","DOI":"10.1146\/annurev-immunol-032712-095910","article-title":"Pathways of antigen processing","volume":"31","author":"Blum","year":"2013","journal-title":"Annu Rev Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_sbref0120","doi-asserted-by":"crossref","first-page":"1273","DOI":"10.1056\/NEJMc2102131","article-title":"Delayed large local reactions to mRNA-1273 vaccine against SARS-CoV-2","volume":"384","author":"Blumenthal","year":"2021","journal-title":"N Engl J Med"},{"key":"10.1016\/j.coviro.2021.03.008_bib0125","series-title":"Antibody Fc: Linking Adaptive and Innate Immunity","article-title":"Antibody-Dependent Cellular Cytotoxicity (ADCC)","author":"G\u00f3mez Rom\u00e1n","year":"2013"},{"key":"10.1016\/j.coviro.2021.03.008_bib0130","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1080\/09687860600790537","article-title":"Immunostimulation of dendritic cells by cationic liposomes","volume":"23","author":"Vangasseri","year":"2006","journal-title":"Mol Membr Biol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0135","doi-asserted-by":"crossref","first-page":"2576","DOI":"10.1021\/acs.biochem.9b00402","article-title":"A liposomal platform for delivery of a protein antigen to langerin-expressing cells","volume":"58","author":"Schulze","year":"2019","journal-title":"Biochemistry"},{"key":"10.1016\/j.coviro.2021.03.008_bib0140","first-page":"1","article-title":"Targeting of the C-type lectin receptor langerin using bifunctional mannosylated antigens","volume":"8","author":"Li","year":"2020","journal-title":"Front Cell Dev Biol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0145","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3389\/fimmu.2019.01134","article-title":"DC subsets regulate humoral immune responses by supporting the differentiation of distinct TFH cells","volume":"10","author":"Bouteau","year":"2019","journal-title":"Front Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0150","doi-asserted-by":"crossref","first-page":"424","DOI":"10.1038\/icb.2010.39","article-title":"Targeting of antigens to skin dendritic cells: possibilities to enhance vaccine efficacy","volume":"88","author":"Romani","year":"2010","journal-title":"Immunol Cell Biol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0155","doi-asserted-by":"crossref","first-page":"854","DOI":"10.1002\/eji.201445127","article-title":"Antibodies targeting Clec9A promote strong humoral immunity without adjuvant in mice and non-human primates","volume":"45","author":"Li","year":"2015","journal-title":"Eur J Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0160","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.jconrel.2019.05.032","article-title":"Therapeutic mRNA delivery to leukocytes","volume":"305","author":"Granot-Matok","year":"2019","journal-title":"J Control Release"},{"key":"10.1016\/j.coviro.2021.03.008_bib0165","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1586\/14760584.2014.957684","article-title":"mRNA-based dendritic cell vaccines","volume":"14","author":"Benteyn","year":"2014","journal-title":"Expert Rev Vaccines"},{"key":"10.1016\/j.coviro.2021.03.008_bib0170","first-page":"3707","article-title":"Intracellular routes and selective retention of antigens in mildly acidic cathepsin D\/lysosome-associated membrane protein-1\/MHC class II-positive vesicles in immature dendritic cells","volume":"159","author":"Lutz","year":"1997","journal-title":"J Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0175","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1016\/j.coi.2019.04.003","article-title":"Antigen presentation by dendritic cells for B cell activation","volume":"58","author":"Heath","year":"2019","journal-title":"Curr Opin Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0180","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1007\/s00441-006-0250-0","article-title":"Origin of follicular dendritic cell in the chicken spleen","volume":"327","author":"Igy\u00e1rt\u00f3","year":"2007","journal-title":"Cell Tissue Res"},{"key":"10.1016\/j.coviro.2021.03.008_bib0185","doi-asserted-by":"crossref","first-page":"430","DOI":"10.1002\/eji.201747260","article-title":"\u201cDouble-duty\u201d conventional dendritic cells in the amphibian Xenopus as the prototype for antigen presentation to B cells","volume":"48","author":"Neely","year":"2018","journal-title":"Eur J Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0190","doi-asserted-by":"crossref","first-page":"981","DOI":"10.1038\/ni.f.208","article-title":"Environmental cues, dendritic cells and the programming of tissue-selective lymphocyte trafficking","volume":"9","author":"Sigmundsdottir","year":"2008","journal-title":"Nat Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0195","doi-asserted-by":"crossref","first-page":"18","DOI":"10.3390\/vaccines6020018","article-title":"Harnessing the power of T cells: the promising hope for a universal influenza vaccine","volume":"6","author":"Clemens","year":"2018","journal-title":"Vaccines"},{"key":"10.1016\/j.coviro.2021.03.008_bib0200","doi-asserted-by":"crossref","first-page":"613","DOI":"10.1038\/s41590-019-0320-6","article-title":"Human CD8 + T cell cross-reactivity across influenza A, B and C viruses","volume":"5","author":"Koutsakos","year":"2019","journal-title":"Nat Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0205","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1126\/science.abd3871","article-title":"Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans","volume":"370","author":"Mateus","year":"2020","journal-title":"Science (80-)"},{"key":"10.1016\/j.coviro.2021.03.008_bib0210","doi-asserted-by":"crossref","first-page":"1489","DOI":"10.1016\/j.cell.2020.05.015","article-title":"Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals","volume":"181","author":"Grifoni","year":"2020","journal-title":"Cell"},{"key":"10.1016\/j.coviro.2021.03.008_bib0215","doi-asserted-by":"crossref","first-page":"457","DOI":"10.1038\/s41586-020-2550-z","article-title":"SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls","volume":"584","author":"Le Bert","year":"2020","journal-title":"Nature"},{"key":"10.1016\/j.coviro.2021.03.008_bib0220","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1146\/annurev.immunol.20.083001.084359","article-title":"Innate immune recognition","volume":"20","author":"Janeway","year":"2002","journal-title":"Annu Rev Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0225","series-title":"Immunobiology: The Immune System in Health and Disease","article-title":"Self-tolerance and its loss","author":"Charles","year":"2001"},{"key":"10.1016\/j.coviro.2021.03.008_bib0230","doi-asserted-by":"crossref","first-page":"1387","DOI":"10.1016\/j.jaci.2015.04.001","article-title":"Skin dendritic cells induce follicular helper T cells and protective humoral immune responses","volume":"136","author":"Yao","year":"2015","journal-title":"J Allergy Clin Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0235","first-page":"595","article-title":"Lipid-based colloidal carriers for peptide and protein delivery - liposomes versus lipid nanoparticles","volume":"2","author":"Martins","year":"2007","journal-title":"Int J Nanomedicine"},{"key":"10.1016\/j.coviro.2021.03.008_bib0240","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/srep34215","article-title":"A tetravalent sub-unit dengue vaccine formulated with ionizable cationic lipid nanoparticle induces significant immune responses in rodents and non-human primates","volume":"6","author":"Swaminathan","year":"2016","journal-title":"Sci Rep"},{"key":"10.1016\/j.coviro.2021.03.008_bib0245","doi-asserted-by":"crossref","first-page":"523","DOI":"10.1038\/s41385-020-0334-2","article-title":"A vaccine combination of lipid nanoparticles and a cholera toxin adjuvant derivative greatly improves lung protection against influenza virus infection","volume":"14","author":"Bernasconi","year":"2020","journal-title":"Mucosal Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0250","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3389\/fimmu.2019.03018","article-title":"Lipid nanoparticles potentiate CpG-oligodeoxynucleotide-based vaccine for influenza virus","volume":"10","author":"Shirai","year":"2020","journal-title":"Front Immunol"},{"key":"10.1016\/j.coviro.2021.03.008_bib0255","doi-asserted-by":"crossref","first-page":"2752","DOI":"10.1016\/S0264-410X(02)00191-3","article-title":"Intranasal immunization with recombinant antigens associated with new cationic particles induces strong mucosal as well as systemic antibody and CTL responses","volume":"20","author":"Debin","year":"2002","journal-title":"Vaccine"},{"key":"10.1016\/j.coviro.2021.03.008_bib0260","doi-asserted-by":"crossref","first-page":"110","DOI":"10.1016\/j.vaccine.2015.10.132","article-title":"A novel lipid nanoparticle adjuvant significantly enhances B cell and T cell responses to sub-unit vaccine antigens","volume":"34","author":"Swaminathan","year":"2016","journal-title":"Vaccine"}],"container-title":["Current Opinion in Virology"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1879625721000304?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1879625721000304?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,6,6]],"date-time":"2021-06-06T06:09:41Z","timestamp":1622959781000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1879625721000304"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6]]},"references-count":52,"alternative-id":["S1879625721000304"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.coviro.2021.03.008","relation":{},"ISSN":["1879-6257"],"issn-type":[{"value":"1879-6257","type":"print"}],"subject":["Virology"],"published":{"date-parts":[[2021,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Future considerations for the mRNA-lipid nanoparticle vaccine platform","name":"articletitle","label":"Article Title"},{"value":"Current Opinion in Virology","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.coviro.2021.03.008","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}
Abstract
Vaccines based on mRNA-containing lipid nanoparticles (LNPs) are a promising new vaccine platform used by two of the leading vaccine candidates against coronavirus disease in 2019 (COVID-19). However, there are many questions regarding their mechanism of action in humans that remain unanswered. Here we consider the immunological features of LNP components and off-target effects of the mRNA, both of which could increase the risk of side effects. We suggest ways to mitigate these potential risks by harnessing dendritic cell (DC) biology.
Keywords
mRNA-LNP vaccines; side effects; dendritic cells
Subject
LIFE SCIENCES, Biochemistry
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.