Preprint
Article

This version is not peer-reviewed.

Flame Retardance and Char Analysis of Environmental Friendly Polyurethane Hyperbranched Organic-Inorganic Hybrid Using the Sol-Gel Method

A peer-reviewed article of this preprint also exists.

Submitted:

18 December 2020

Posted:

18 December 2020

You are already at the latest version

Abstract
This study used the sol–gel method to synthesize a non-halogenated hyperbranched flame retardant containing nitrogen, phosphorus and silicon, HBNPSi, which was then added to a polyurethane (PU) matrix to form an organic–inorganic hybrid material. Using 29Si nuclear magnetic resonance, energy-dispersive X-ray spectroscopy of P- and Si-mapping, scanning electron microscopy, and X-ray photoelectron spectroscopy, this study determined the organic and inorganic dispersity, morphology, and flame retardance mechanism of the hybrid material. The condensation density of the hybrid material PU/HBNPSi was found to be 74.4%. High condensation density indicates a dense network structure of the material. The P- and Si-mapping showed that adding inorganic additives in quantities of either 20% or 40% results in homogeneous dispersion of the inorganic fillers in the polymer matrix without agglomeration, indicating that the organic and inorganic phases had excellent compatibility. In the burning test, adding HBNPSi to PU resulted in the material passing the UL-94 standard at the V2 level, unlike the pristine PU, which did not meet the standard. The results demonstrated that after non-halogenated flame retardant was added to PU, the material’s flammability and dripping were lower, thereby proving that flame retardants containing elements such as nitrogen, phosphorus, and silicon exert an excellent flame retardant synergistic effect.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated