Preprint
Article

Effects of the Antibiotic Alternatives Zinc and Menthol on Phenotypic Antimicrobial Resistance of E. coli and Enterococcus spp. in Beef Cattle

Submitted:

08 December 2020

Posted:

09 December 2020

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Antimicrobial resistance (AMR) represents a growing crisis in both human and veterinary medicine. We evaluated the use of two categories of antibiotic alternatives – heavy metals and essential oils – in beef cattle, and their effects on gram-negative and gram-positive bacteria. In this randomized controlled field trial, we measured the impact of supplemental zinc and menthol on antimicrobial resistance among commensal enteric bacteria of feeder cattle. Fecal suspensions were plated onto plain- and antibiotic-supplemented MacConkey and m-Enterococcus agar for quantification of total and antimicrobial-resistant Escherichia coli and Enterococcus spp., respectively. Temporal effects on overall E. coli growth were significant (P< 0.05); however, there were no significant effects on antibiotic-supplemented agar. Zinc was associated with significant increases in growth on erythromycin-supplemented m-Enterococcus agar. Cattle fed zinc exhibited significantly higher macrolide resistance among fecal enterococci isolates.
Keywords: 
antibiotic resistance; antibiotic alternatives; heavy metals; essential oils
Subject: 
Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

275

Views

320

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated