Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Biodiesel Dry Purification Using Unconventional Bioadsorbents

Version 1 : Received: 7 December 2020 / Approved: 8 December 2020 / Online: 8 December 2020 (10:03:26 CET)

A peer-reviewed article of this Preprint also exists.

Arenas, E.; Villafán-Cáceres, S.M.; Rodríguez-Mejía, Y.; García-Loyola, J.A.; Masera, O.; Sandoval, G. Biodiesel Dry Purification Using Unconventional Bioadsorbents. Processes 2021, 9, 194. Arenas, E.; Villafán-Cáceres, S.M.; Rodríguez-Mejía, Y.; García-Loyola, J.A.; Masera, O.; Sandoval, G. Biodiesel Dry Purification Using Unconventional Bioadsorbents. Processes 2021, 9, 194.

Journal reference: Processes 2021, 9, 194
DOI: 10.3390/pr9020194

Abstract

The dry washing method is an alternative to replace water washing, thereby reducing the negative impacts of contamination. However, commercial adsorbents come from industrial processes that, due to their composition, may not be such a sustainable resource in the global biodiesel production process. In this study, the use of organic residues, such as sawdust, coconut fiber, nutshell, rice husk and water hyacinth fiber, were proposed as bioadsorbents for the purification of biodiesel from waste cooking oil (WCO). Quality parameters such as the acid value, water content, and free and total glycerin content were evaluated and compared with those of commercial resins such as Magnesol® and Amberlite™. Promising results were obtained using sawdust during the purification process, achieving a 31.6% reduction in the acid value compared to that of unpurified biodiesel, the reduction was 31.3% more efficient than Amberlite™. Sawdust adsorbed free glycerin at 55.8%, being more efficient than Amberlite™. The total glycerin values were similar between commercial resins and sawdust. A water content values were similar than Amberlite™ and better than that with Magnesol®, at 4.3% and 39.81%, respectively. These results show that sawdust can be used as an alternative bioadsorbent in a dry purification method for biodiesel being a residue with less environmental impact.

Subject Areas

Bioadsorbents; biodiesel; waste cooking oil; purification

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.