Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

THE GENERALIZED OTOC FROM SUPERSYMMETRIC QUANTUM MECHANICS: Study of Random Fluctuations from Eigenstate Representation of Correlation Functions

Version 1 : Received: 6 December 2020 / Approved: 7 December 2020 / Online: 7 December 2020 (12:56:46 CET)

A peer-reviewed article of this Preprint also exists.

Bhagat, K.Y.; Bose, B.; Choudhury, S.; Chowdhury, S.; Das, R.N.; Dastider, S.G.; Gupta, N.; Maji, A.; Pasquino, G.D.; Paul, S. The Generalized OTOC from Supersymmetric Quantum Mechanics—Study of Random Fluctuations from Eigenstate Representation of Correlation Functions. Symmetry 2021, 13, 44. Bhagat, K.Y.; Bose, B.; Choudhury, S.; Chowdhury, S.; Das, R.N.; Dastider, S.G.; Gupta, N.; Maji, A.; Pasquino, G.D.; Paul, S. The Generalized OTOC from Supersymmetric Quantum Mechanics—Study of Random Fluctuations from Eigenstate Representation of Correlation Functions. Symmetry 2021, 13, 44.

Abstract

The concept of out-of-time-ordered correlation (OTOC) function is treated as a very strong theoretical probe of quantum randomness, using which one can study both chaotic and non-chaotic phenomena in the context of quantum statistical mechanics. In this paper, we define a general class of OTOC, which can perfectly capture quantum randomness phenomena in a better way. Further we demonstrate an equivalent formalism of computation using a general time independent Hamiltonian having well defined eigenstate representation for integrable supersymmetric quantum systems. We found that one needs to consider two new correlators apart from the usual one to have a complete quantum description. To visualize the impact of the given formalism we consider the two well known models viz. Harmonic Oscillator and one dimensional potential well within the framework of supersymmetry. For the Harmonic Oscillator case we obtain similar periodic time dependence but dissimilar parameter dependences compared to the results obtained from both microcanonical and canonical ensembles in quantum mechanics without supersymmetry. On the other hand, for one dimensional potential well problem we found significantly different time scale and the other parameter dependence compared to the results obtained from non-supersymmetric quantum mechanics. Finally, to establish the consistency of the prescribed formalism in the classical limit, we demonstrate the phase space averaged version of the classical version of OTOCs from a model independent Hamiltonian along with the previously mentioned these well cited models.

Keywords

OTOC, Supersymmetry, Out-of-equilibrium quantum statistical mechanics

Subject

Physical Sciences, Quantum Science and Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.