Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Effect of Helix Angle on the Performance of Helical Vertical Axis Wind Turbine

Version 1 : Received: 4 December 2020 / Approved: 7 December 2020 / Online: 7 December 2020 (12:00:17 CET)

A peer-reviewed article of this Preprint also exists.

Divakaran, U.; Ramesh, A.; Mohammad, A.; Velamati, R.K. Effect of Helix Angle on the Performance of Helical Vertical Axis Wind Turbine. Energies 2021, 14, 393. Divakaran, U.; Ramesh, A.; Mohammad, A.; Velamati, R.K. Effect of Helix Angle on the Performance of Helical Vertical Axis Wind Turbine. Energies 2021, 14, 393.

Abstract

The global energy crisis has lead researchers explore other sources of energy like wind, resulting in a wide acceptance of wind turbines. Vertical axis wind turbines (VAWT) more suitable for small scale application in urban conditions than their horizontal-axis counterparts. A Helical bladed VAWT would reduce the ripple effect when compared to Straight bladed VAWT. The effect of the blade helix angle on the aerodynamic performance of VAWT using 3D numerical simulations is studied. Turbulence modelled using 4-Equation transition SST k-w model. Three different helix angles of 60, 90 and 120 of a 3 bladed VAWT operating across different tip speed ratios were studied. The 60 helical bladed VAWT was found to perform better than all other helical bladed and straight bladed VAWT. Standard deviation of the moment coefficient generated by a blade plotted against 360 of azimuth rotation revealed that the ripple effect on the shaft produced by cyclic loading of the straight blade is considerably reduced upon introduction of helix angle, with 120 helical blade giving lowest standard deviation. The analysis has been done for the percentage of power generated by each quartile of flow and the contribution of each section of the blade. A comparative study was also conducted between different helical bladed VAWT and straight bladed VAWT. Flow feature analysis also revealed the reasons behind secondary peaks and the performance improvement when tip speed ratio increases. Wake structure analysis and flow contours were also studied for a better understanding of the flow field.

Keywords

Vertical Axis Wind Turbine; Wind Energy; Helical Blade; CFD

Subject

Engineering, Automotive Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.