Preprint
Article

This version is not peer-reviewed.

A Wire-Driven Discrete Continuum Robot Sliding and Non-sliding Backbone Design Analysis and Validation of Kinematics/Kinetics

Submitted:

02 December 2020

Posted:

03 December 2020

You are already at the latest version

Abstract
Wire-driven hyper-redundant continuum manipulators are gaining more popularity and finding more applications in industry and in minimally invasive surgery. Unlike traditional rigid link manipulators, continuum robots with a flexible backbone structure are able to work in a highly constrained workspace and in an unstructured environment. However, in spite of a possible wide range of reachability, continuum manipulators have some issues related to payload capacity, accuracy and control. Therefore, in this research, we propose a novel hyper-redundant continuum robot with a passive sliding disc mechanism to improve payload capacity and accuracy. To prove the sliding mechanism concept, we demonstrate a comparison analysis with a conventional non-sliding continuum robot arm in a payload test, a bending test and a reachability test. Moreover, with this novel design, we are proposing robot kinematics and kinetic formulation and simulation results to validate the effectiveness of the sliding disc mechanism.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated