Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Long-Lasting Graft Union Compatibility Enigma Explained by Comparative Physiological and Biochemical Mechanisms in Di, Tri, and Tetraploid Watermelon (Citrullus lanatus L.) Grafted by Branches

Version 1 : Received: 1 December 2020 / Approved: 2 December 2020 / Online: 2 December 2020 (08:07:11 CET)

How to cite: Kaseb, M.; Umer, M.J.; Gebremeskel, H.; Mahmud, E.; Diao, W.; Yuan, P.; Zhu, H.; Zhao, S.; Lu, X.; He, N.; Gong, C.; Anees, M.; El-Eslamboly, A.; Liu, W. Long-Lasting Graft Union Compatibility Enigma Explained by Comparative Physiological and Biochemical Mechanisms in Di, Tri, and Tetraploid Watermelon (Citrullus lanatus L.) Grafted by Branches. Preprints 2020, 2020120050 (doi: 10.20944/preprints202012.0050.v1). Kaseb, M.; Umer, M.J.; Gebremeskel, H.; Mahmud, E.; Diao, W.; Yuan, P.; Zhu, H.; Zhao, S.; Lu, X.; He, N.; Gong, C.; Anees, M.; El-Eslamboly, A.; Liu, W. Long-Lasting Graft Union Compatibility Enigma Explained by Comparative Physiological and Biochemical Mechanisms in Di, Tri, and Tetraploid Watermelon (Citrullus lanatus L.) Grafted by Branches. Preprints 2020, 2020120050 (doi: 10.20944/preprints202012.0050.v1).

Abstract

Polyploid seed production is complicated, and costly work, produce a fewer number of seeds/fruits as compared to diploid seeds. Here we investigated the interactive effect of a new grafting technique of polyploid watermelon scion onto rootstock on plants' survival rate. In this study, three different branches, apical meristem (AM), branch with 1 node (1N), and 2 nodes (2N) from di, tri, and tetraploid watermelon plants, were used as scion and grafted onto squash rootstock. The results showed highly significant differences between polypoid watermelon when 1N was used as a scion. Tetraploid showed maximum survival rates, higher contents of hormones, carbohydrates, and antioxidants activities, compared to diploid. Here, we also performed applied sucrose exogenously, on the rootstocks seedlings before grafting to enhance survival rates. Significant survival rates were observed in the case of 2% sucrose application in all polyploids when 1N was used as a scion. RTq-PCR results confirm that the expression of genes linked to compatibility is consistent with the carbohydrates, hormonal and antioxidants activities. This study provides an alternative and economical approach to produce more tetraploid and triploid plants for breeding and seed production by using branches as scions, furthermore, provides more understanding of graft compatibility.

Subject Areas

watermelon; polyploidy; grafting; branches; compatibility

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.