Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Conflicting and Ambiguous Names of Overlapping ORFs in SARS-CoV-2: A Homology-Based Resolution

Version 1 : Received: 30 November 2020 / Approved: 2 December 2020 / Online: 2 December 2020 (08:04:06 CET)

A peer-reviewed article of this Preprint also exists.

{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,3,8]],"date-time":"2023-03-08T10:57:04Z","timestamp":1678273024073},"reference-count":68,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,3,9]],"date-time":"2021-03-09T00:00:00Z","timestamp":1615248000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/100000002","name":"National Institutes of Health","doi-asserted-by":"publisher"},{"DOI":"10.13039\/100000051","name":"National Human Genome Research Institute","doi-asserted-by":"publisher"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Virology"],"published-print":{"date-parts":[[2021,6]]},"DOI":"10.1016\/j.virol.2021.02.013","type":"journal-article","created":{"date-parts":[[2021,3,18]],"date-time":"2021-03-18T05:07:36Z","timestamp":1616044056000},"page":"145-151","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":29,"title":["Conflicting and ambiguous names of overlapping ORFs in the SARS-CoV-2 genome: A homology-based resolution"],"prefix":"10.1016","volume":"558","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3197-5367","authenticated-orcid":false,"given":"Irwin","family":"Jungreis","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6287-1598","authenticated-orcid":false,"given":"Chase W.","family":"Nelson","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9008-0897","authenticated-orcid":false,"given":"Zachary","family":"Ardern","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3843-2357","authenticated-orcid":false,"given":"Yaara","family":"Finkel","sequence":"additional","affiliation":[]},{"given":"Nevan J.","family":"Krogan","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4431-1380","authenticated-orcid":false,"given":"Kei","family":"Sato","sequence":"additional","affiliation":[]},{"given":"John","family":"Ziebuhr","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3583-5932","authenticated-orcid":false,"given":"Noam","family":"Stern-Ginossar","sequence":"additional","affiliation":[]},{"given":"Angelo","family":"Pavesi","sequence":"additional","affiliation":[]},{"given":"Andrew E.","family":"Firth","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4967-7341","authenticated-orcid":false,"given":"Alexander E.","family":"Gorbalenya","sequence":"additional","affiliation":[]},{"given":"Manolis","family":"Kellis","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.virol.2021.02.013_bib1","doi-asserted-by":"crossref","first-page":"e79129","DOI":"10.1371\/journal.pone.0079129","article-title":"Study of the HIV-2 Env cytoplasmic tail variability and its impact on Tat, Rev and Nef","volume":"8","author":"Bakouche","year":"2013","journal-title":"PloS One"},{"key":"10.1016\/j.virol.2021.02.013_bib2","doi-asserted-by":"crossref","unstructured":"Banerjee, A.K., Blanco, M.R., Bruce, E.A., Honson, D.D., Chen, L.M., Chow, A., Bhat, P., Ollikainen, N., Quinodoz, S.A., Loney, C., Thai, J., Miller, Z.D., Lin, A.E., Schmidt, M.M., Stewart, D.G., Goldfarb, D., De Lorenzo, G., Rihn, S.J., Voorhees, R.M., Botten, J.W., Majumdar, D., Guttman, M., 2020. SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses. Cell.. https:\/\/doi.org\/10.1016\/j.cell.2020.10.004.","DOI":"10.1016\/j.cell.2020.10.004"},{"key":"10.1016\/j.virol.2021.02.013_bib3","doi-asserted-by":"crossref","first-page":"469","DOI":"10.1038\/s41586-020-2332-7","article-title":"Proteomics of SARS-CoV-2-infected host cells reveals therapy targets","volume":"583","author":"Bojkova","year":"2020","journal-title":"Nature"},{"key":"10.1016\/j.virol.2021.02.013_bib4","doi-asserted-by":"crossref","unstructured":"Cagliani, R., Forni, D., Clerici, M., Sironi, M., 2020. Coding potential and sequence conservation of SARS-CoV-2 and related animal viruses. Infection, Genetics and Evolution. https:\/\/doi.org\/10.1016\/j.meegid.2020.104353.","DOI":"10.1016\/j.meegid.2020.104353"},{"key":"10.1016\/j.virol.2021.02.013_bib5","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.placenta.2020.05.012","article-title":"Factors preventing materno-fetal transmission of SARS-CoV-2","volume":"97","author":"Celik","year":"2020","journal-title":"Placenta"},{"key":"10.1016\/j.virol.2021.02.013_bib6","doi-asserted-by":"crossref","article-title":"Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan","author":"Chan","year":"2020","journal-title":"Emerg. Microb. Infect.","DOI":"10.1080\/22221751.2020.1719902"},{"key":"10.1016\/j.virol.2021.02.013_bib7","doi-asserted-by":"crossref","first-page":"1432","DOI":"10.1038\/modpathol.3800439","article-title":"Coronaviral hypothetical and structural proteins were found in the intestinal surface enterocytes and pneumocytes of severe acute respiratory syndrome (SARS)","volume":"18","author":"Chan","year":"2005","journal-title":"Mod. Pathol."},{"key":"10.1016\/j.virol.2021.02.013_bib8","doi-asserted-by":"crossref","article-title":"Origin and evolution of pathogenic coronaviruses","author":"Cui","year":"2019","journal-title":"Nat. Rev. Microbiol.","DOI":"10.1038\/s41579-018-0118-9"},{"issue":"68","key":"10.1016\/j.virol.2021.02.013_bib9","article-title":"Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein","volume":"12","author":"Davidson","year":"2020","journal-title":"Genome Med."},{"key":"10.1016\/j.virol.2021.02.013_bib10","doi-asserted-by":"crossref","unstructured":"de Groot, R.J., Baker, S.C., Baric, R., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Perlman, S., Poon, L., Rottier, P.J.M., Talbot, P.J., Others, 2012. Family Coronaviridae, p 806\u2013828. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. Academic Press, San Diego, CA.","DOI":"10.1016\/B978-0-12-384684-6.00068-9"},{"key":"10.1016\/j.virol.2021.02.013_bib11","doi-asserted-by":"crossref","first-page":"E8895","DOI":"10.1073\/pnas.1706696114","article-title":"Expanded subgenomic mRNA transcriptome and coding capacity of a nidovirus","volume":"114","author":"Di","year":"2017","journal-title":"Proc. Natl. Acad. Sci. U. S. A"},{"key":"10.1016\/j.virol.2021.02.013_bib12","article-title":"The coding capacity of SARS-CoV-2","author":"Finkel","year":"2020","journal-title":"Nature"},{"key":"10.1016\/j.virol.2021.02.013_bib13","doi-asserted-by":"crossref","unstructured":"Firth, A.E., 2020. A putative new SARS-CoV protein, 3c, encoded in an ORF overlapping ORF3a. Journal of General Virology. https:\/\/doi.org\/10.1099\/jgv.0.001469.","DOI":"10.1101\/2020.05.12.088088"},{"key":"10.1016\/j.virol.2021.02.013_bib14","doi-asserted-by":"crossref","first-page":"1385","DOI":"10.1099\/vir.0.042499-0","article-title":"Non-canonical translation in RNA viruses","volume":"93","author":"Firth","year":"2012","journal-title":"J. Gen. Virol."},{"key":"10.1016\/j.virol.2021.02.013_bib15","doi-asserted-by":"crossref","DOI":"10.3390\/v8070184","article-title":"Regulation of stress responses and translational control by coronavirus","volume":"8","author":"Fung","year":"2016","journal-title":"Viruses"},{"key":"10.1016\/j.virol.2021.02.013_bib16","doi-asserted-by":"crossref","first-page":"405","DOI":"10.2217\/fvl-2018-0008","article-title":"Post-translational modifications of coronavirus proteins: roles and function","volume":"13","author":"Fung","year":"2018","journal-title":"Future Virol."},{"key":"10.1016\/j.virol.2021.02.013_bib17","doi-asserted-by":"crossref","unstructured":"Garofalo, M., Staniszewska, M., Salmaso, S., Caliceti, P., Pancer, K.W., Wieczorek, M., Kuryk, L., 2020. Prospects of Replication-Deficient Adenovirus Based Vaccine Development against SARS-CoV-2. Vaccines (Basel) 8. https:\/\/doi.org\/10.3390\/vaccines8020293.","DOI":"10.3390\/vaccines8020293"},{"key":"10.1016\/j.virol.2021.02.013_bib18","doi-asserted-by":"crossref","unstructured":"Gorbalenya, A.E., Baker, S.C., Baric, R.S., de Groot, R.J., Drosten, C., Gulyaeva, A.A., Haagmans, B.L., Lauber, C., Leontovich, A.M., Neuman, B.W., Penzar, D., Perlman, S., Poon, L.L.M., Samborskiy, D.V., Sidorov, I.A., Sola, I., Ziebuhr, J., 2020. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology. https:\/\/doi.org\/10.1038\/s41564-020-0695-z.","DOI":"10.1038\/s41564-020-0695-z"},{"key":"10.1016\/j.virol.2021.02.013_bib19","doi-asserted-by":"crossref","article-title":"A SARS-CoV-2 protein interaction map reveals targets for drug repurposing","author":"Gordon","year":"2020","journal-title":"Nature","DOI":"10.1038\/s41586-020-2286-9"},{"key":"10.1016\/j.virol.2021.02.013_bib20","doi-asserted-by":"crossref","first-page":"1293","DOI":"10.1038\/s41590-020-0773-7","article-title":"ORF8 and ORF3b antibodies are accurate serological markers of early and late SARS-CoV-2 infection","volume":"21","author":"Hachim","year":"2020","journal-title":"Nat. Immunol."},{"key":"10.1016\/j.virol.2021.02.013_bib21","article-title":"Imperfect innate immune antagonism renders SARS-CoV-2 vulnerable towards IFN-\u03b3 and -\u03bb","author":"Hayn","year":"2020","journal-title":"Cold Spring Harb. Lab."},{"key":"10.1016\/j.virol.2021.02.013_bib22","article-title":"The COVID-19 pandemic: a comprehensive review of Taxonomy, genetics, epidemiology, diagnosis, treatment, and control","volume":"9","author":"Helmy","year":"2020","journal-title":"J. Clin. Med. Res."},{"key":"10.1016\/j.virol.2021.02.013_bib23","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1016\/j.febslet.2004.09.076","article-title":"Evolutional insights on uncharacterized SARS coronavirus genes","volume":"577","author":"Inberg","year":"2004","journal-title":"FEBS Lett."},{"key":"10.1016\/j.virol.2021.02.013_bib24","doi-asserted-by":"crossref","first-page":"e1005473","DOI":"10.1371\/journal.ppat.1005473","article-title":"High-resolution analysis of coronavirus gene expression by RNA sequencing and ribosome profiling","volume":"12","author":"Irigoyen","year":"2016","journal-title":"PLoS Pathog."},{"key":"10.1016\/j.virol.2021.02.013_bib26","doi-asserted-by":"crossref","unstructured":"Kim, D.-K., Knapp, J.J., Kuang, D., Cassonnet, P., Samavarchi-Tehrani, P., Abdouni, H., Rayhan, A., Sheykhkarimli, D., Coyaud, E., van der Werf, S., Others, 2020a. A Flexible Genome-Scale Resource of SARS-CoV-2 Coding Sequence Clones.","DOI":"10.20944\/preprints202004.0009.v1"},{"key":"10.1016\/j.virol.2021.02.013_bib25","doi-asserted-by":"crossref","article-title":"SARS-CoV-2 Gene Content and COVID-19 Mutation Impact by Comparing 44 Sarbecovirus Genomes","author":"Jungreis","year":"2021","journal-title":"Nat. Commun","DOI":"10.1038\/s41467-021-22905-7"},{"key":"10.1016\/j.virol.2021.02.013_bib27","doi-asserted-by":"crossref","first-page":"914","DOI":"10.1016\/j.cell.2020.04.011","article-title":"The architecture of SARS-CoV-2 transcriptome","volume":"181","author":"Kim","year":"2020","journal-title":"Cell"},{"key":"10.1016\/j.virol.2021.02.013_bib28","doi-asserted-by":"crossref","unstructured":"Konno, Y., Kimura, I., Uriu, K., Fukushi, M., Irie, T., 2020a. SARS-CoV-2 ORF3b Is a Potent Interferon Antagonist Whose Activity Is Further Increased by a Naturally Occurring Elongation Variant. bioRxiv.","DOI":"10.1101\/2020.05.11.088179"},{"key":"10.1016\/j.virol.2021.02.013_bib29","article-title":"SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is increased by a naturally occurring elongation variant","volume":"108185","author":"Konno","year":"2020","journal-title":"Cell Rep."},{"key":"10.1016\/j.virol.2021.02.013_bib30","doi-asserted-by":"crossref","article-title":"Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and Nucleocapsid proteins function as interferon antagonists","author":"Kopecky-Bromberg","year":"2007","journal-title":"J. Virol.","DOI":"10.1128\/JVI.01782-06"},{"key":"10.1016\/j.virol.2021.02.013_bib31","first-page":"1","article-title":"Loss of orf3b in the circulating SARS-CoV-2 strains","author":"Lam","year":"2020","journal-title":"Emerg. Microb. Infect."},{"key":"10.1016\/j.virol.2021.02.013_bib32","doi-asserted-by":"crossref","unstructured":"Laurent, E.M.N., Sofianatos, Y., Komarova, A., Gimeno, J.P., 2020. Global BioID-Based SARS-CoV-2 Proteins Proximal Interactome Unveils Novel Ties between Viral Polypeptides and Host Factors Involved in Multiple COVID19 \u2026. bioRxiv.","DOI":"10.1101\/2020.08.28.272955"},{"issue":"1193","key":"10.1016\/j.virol.2021.02.013_bib33","article-title":"Antibody dynamics to SARS-CoV-2 in asymptomatic COVID-19 infections","volume":"26","author":"Lei","year":"2020","journal-title":"Allergy"},{"key":"10.1016\/j.virol.2021.02.013_bib34","doi-asserted-by":"crossref","article-title":"Accessory proteins of SARS-CoV and other coronaviruses","author":"Liu","year":"2014","journal-title":"Antivir. Res.","DOI":"10.1016\/j.antiviral.2014.06.013"},{"key":"10.1016\/j.virol.2021.02.013_bib35","doi-asserted-by":"crossref","first-page":"6143","DOI":"10.1128\/jvi.66.10.6143-6154.1992","article-title":"Internal entry of ribosomes on a tricistronic mRNA encoded by infectious bronchitis virus","volume":"66","author":"Liu","year":"1992","journal-title":"J. Virol."},{"key":"10.1016\/j.virol.2021.02.013_bib36","doi-asserted-by":"crossref","DOI":"10.1128\/JVI.01410-20","article-title":"Type I interferon susceptibility distinguishes SARS-CoV-2 from SARS-CoV","volume":"94","author":"Lokugamage","year":"2020","journal-title":"J. Virol."},{"key":"10.1016\/j.virol.2021.02.013_bib37","doi-asserted-by":"crossref","first-page":"565","DOI":"10.1016\/S0140-6736(20)30251-8","article-title":"Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding","volume":"395","author":"Lu","year":"2020","journal-title":"Lancet"},{"key":"10.1016\/j.virol.2021.02.013_bib38","doi-asserted-by":"crossref","first-page":"1399","DOI":"10.1126\/science.1085953","article-title":"The Genome sequence of the SARS-associated coronavirus","volume":"300","author":"Marra","year":"2003","journal-title":"Science"},{"issue":"131","key":"10.1016\/j.virol.2021.02.013_bib39","article-title":"Characterization of accessory genes in coronavirus genomes","volume":"17","author":"Michel","year":"2020","journal-title":"Virol. J."},{"key":"10.1016\/j.virol.2021.02.013_bib40","doi-asserted-by":"crossref","unstructured":"Nabeel-Shah, S., Lee, H., Ahmed, N., Marcon, E., 2020. SARS-CoV-2 Nucleocapsid Protein Attenuates Stress Granule Formation and Alters Gene Expression via Direct Interaction with Host mRNAs. bioRxiv.","DOI":"10.1101\/2020.10.23.342113"},{"key":"10.1016\/j.virol.2021.02.013_bib41","unstructured":"Nelson, C.W., Ardern, Z., Goldberg, T.L., Meng, C., Kuo, C.H., 2020a. A Previously Uncharacterized Gene in SARS-CoV-2 Illuminates the Functional Dynamics and Evolutionary Origins of the COVID-19 Pandemic. bioRxiv."},{"key":"10.1016\/j.virol.2021.02.013_bib42","doi-asserted-by":"crossref","DOI":"10.7554\/eLife.59633","article-title":"Dynamically evolving novel overlapping gene as a factor in the SARS-CoV-2 pandemic","volume":"9","author":"Nelson","year":"2020","journal-title":"Elife"},{"key":"10.1016\/j.virol.2021.02.013_bib43","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1006\/viro.2000.0218","article-title":"Downstream ribosomal entry for translation of coronavirus TGEV gene 3b","volume":"269","author":"O'Connor","year":"2000","journal-title":"Virology"},{"key":"10.1016\/j.virol.2021.02.013_bib44","article-title":"Computational search of hybrid human\/SARS-CoV-2 dsRNA reveals unique viral sequences that diverge from other coronavirus strains","author":"Pasquier","year":"2020","journal-title":"Cold Spring Harb. Lab."},{"key":"10.1016\/j.virol.2021.02.013_bib45","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.virol.2020.03.007","article-title":"New insights into the evolutionary features of viral overlapping genes by discriminant analysis","volume":"546","author":"Pavesi","year":"2020","journal-title":"Virology"},{"key":"10.1016\/j.virol.2021.02.013_bib46","doi-asserted-by":"crossref","article-title":"Exploring the SARS-CoV-2 virus-host-drug interactome for drug repurposing","author":"Sadegh","year":"2020","journal-title":"Nat. Commun.","DOI":"10.1038\/s41467-020-17189-2"},{"key":"10.1016\/j.virol.2021.02.013_bib47","author":"Samavarchi-Tehrani"},{"key":"10.1016\/j.virol.2021.02.013_bib48","doi-asserted-by":"crossref","first-page":"e1008737","DOI":"10.1371\/journal.ppat.1008737","article-title":"Interplay between SARS-CoV-2 and the type I interferon response","volume":"16","author":"Sa Ribero","year":"2020","journal-title":"PLoS Pathog."},{"key":"10.1016\/j.virol.2021.02.013_bib49","doi-asserted-by":"crossref","first-page":"2572","DOI":"10.1093\/molbev\/msy155","article-title":"A simple method to detect candidate overlapping genes in viruses using single genome sequences","volume":"35","author":"Schlub","year":"2018","journal-title":"Mol. Biol. Evol."},{"key":"10.1016\/j.virol.2021.02.013_bib50","first-page":"865","article-title":"Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage","author":"Snijder","year":"2003","journal-title":"J. Mol. Biol."},{"key":"10.1016\/j.virol.2021.02.013_bib51","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1146\/annurev-virology-100114-055218","article-title":"Continuous and discontinuous RNA synthesis in coronaviruses","volume":"2","author":"Sola","year":"2015","journal-title":"Annu. Rev. Virol."},{"key":"10.1016\/j.virol.2021.02.013_bib52","doi-asserted-by":"crossref","unstructured":"St-Germain, J.R., Astori, A., Samavarchi-Tehrani, P., Abdouni, H., Macwan, V., Kim, D.-K., Knapp, J.J., Roth, F.P., Gingras, A.-C., Raught, B., 2020. A SARS-CoV-2 BioID-Based Virus-Host Membrane Protein Interactome and Virus Peptide Compendium: New Proteomics Resources for COVID-19 Research. Cold Spring Harbor Laboratory. https:\/\/doi.org\/10.1101\/2020.08.28.269175.","DOI":"10.1101\/2020.08.28.269175"},{"key":"10.1016\/j.virol.2021.02.013_bib53","doi-asserted-by":"crossref","unstructured":"Sun, W., 2020. The Discovery of Gene Mutations Making SARS-CoV-2 Well Adapted for Humans: Host-Genome Similarity Analysis of 2594 Genomes from China, the USA and Europe. Cold Spring Harbor Laboratory. https:\/\/doi.org\/10.1101\/2020.09.03.280727.","DOI":"10.1101\/2020.09.03.280727"},{"issue":"580641","key":"10.1016\/j.virol.2021.02.013_bib54","article-title":"Covid-19: perspectives on innate immune evasion. Front","volume":"11","author":"Taefehshokr","year":"2020","journal-title":"Immunol."},{"key":"10.1016\/j.virol.2021.02.013_bib55","article-title":"UniProt: a worldwide hub of protein knowledge","year":"2019","journal-title":"Nucleic Acids Res."},{"issue":"Pt 11","key":"10.1016\/j.virol.2021.02.013_bib56","doi-asserted-by":"crossref","first-page":"3041","DOI":"10.1099\/0022-1317-75-11-3041","article-title":"Internal ribosome entry in the coding region of murine hepatitis virus mRNA 5","volume":"75","author":"Thiel","year":"1994","journal-title":"J. Gen. Virol."},{"key":"10.1016\/j.virol.2021.02.013_bib57","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1038\/s41586-020-2008-3","article-title":"A new coronavirus associated with human respiratory disease in China","volume":"579","author":"Wu","year":"2020","journal-title":"Nature"},{"issue":"1576","key":"10.1016\/j.virol.2021.02.013_bib58","article-title":"Severe acute respiratory syndrome coronavirus 2: from gene structure to pathogenic mechanisms and potential therapy","volume":"11","author":"Wu","year":"2020","journal-title":"Front. Microbiol."},{"issue":"108234","key":"10.1016\/j.virol.2021.02.013_bib59","article-title":"Evasion of type I interferon by SARS-CoV-2","volume":"33","author":"Xia","year":"2020","journal-title":"Cell Rep."},{"issue":"117","key":"10.1016\/j.virol.2021.02.013_bib60","article-title":"SARS-CoV-2: characteristics and current advances in research","volume":"17","author":"Yang","year":"2020","journal-title":"Virol. J."},{"key":"10.1016\/j.virol.2021.02.013_bib61","doi-asserted-by":"crossref","article-title":"COVID-19: what has been learned and to be learned about the novel coronavirus disease","author":"Yi","year":"2020","journal-title":"Int. J. Biol. Sci.","DOI":"10.7150\/ijbs.45134"},{"key":"10.1016\/j.virol.2021.02.013_bib62","doi-asserted-by":"crossref","first-page":"198","DOI":"10.1007\/s10930-020-09901-4","article-title":"The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19","volume":"39","author":"Yoshimoto","year":"2020","journal-title":"Protein J."},{"key":"10.1016\/j.virol.2021.02.013_bib63","doi-asserted-by":"crossref","first-page":"1418","DOI":"10.1080\/22221751.2020.1780953","article-title":"SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists","volume":"9","author":"Yuen","year":"2020","journal-title":"Emerg. Microb. Infect."},{"key":"10.1016\/j.virol.2021.02.013_bib64","article-title":"A systemic and molecular study of subcellular localization of SARS-CoV-2 proteins","author":"Zhang","year":"2020","journal-title":"Cold Spring Harb. Lab."},{"key":"10.1016\/j.virol.2021.02.013_bib65","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1099\/vir.0.033589-0","article-title":"Bat severe acute respiratory syndrome-like coronavirus ORF3b homologues display different interferon antagonist activities","volume":"93","author":"Zhou","year":"2012","journal-title":"J. Gen. Virol."},{"key":"10.1016\/j.virol.2021.02.013_bib66","doi-asserted-by":"crossref","first-page":"270","DOI":"10.1038\/s41586-020-2012-7","article-title":"A pneumonia outbreak associated with a new coronavirus of probable bat origin","volume":"579","author":"Zhou","year":"2020","journal-title":"Nature"},{"key":"10.1016\/j.virol.2021.02.013_bib67","doi-asserted-by":"crossref","first-page":"727","DOI":"10.1056\/NEJMoa2001017","article-title":"A novel coronavirus from patients with pneumonia in China, 2019","volume":"382","author":"Zhu","year":"2020","journal-title":"N. Engl. J. Med."},{"key":"10.1016\/j.virol.2021.02.013_bib68","article-title":"Lost in deletion: the enigmatic ORF8 protein of SARS-CoV-2","author":"Zinzula","year":"2020","journal-title":"Biochem. Biophys. Res. Commun."}],"container-title":["Virology"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0042682221000532?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0042682221000532?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,6,25]],"date-time":"2022-06-25T04:02:53Z","timestamp":1656129773000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0042682221000532"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6]]},"references-count":68,"alternative-id":["S0042682221000532"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.virol.2021.02.013","relation":{},"ISSN":["0042-6822"],"issn-type":[{"value":"0042-6822","type":"print"}],"subject":["Virology"],"published":{"date-parts":[[2021,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Conflicting and ambiguous names of overlapping ORFs in the SARS-CoV-2 genome: A homology-based resolution","name":"articletitle","label":"Article Title"},{"value":"Virology","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.virol.2021.02.013","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 The Author(s). Published by Elsevier Inc.","name":"copyright","label":"Copyright"}]}} {"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,3,8]],"date-time":"2023-03-08T10:57:04Z","timestamp":1678273024073},"reference-count":68,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,3,9]],"date-time":"2021-03-09T00:00:00Z","timestamp":1615248000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/100000002","name":"National Institutes of Health","doi-asserted-by":"publisher"},{"DOI":"10.13039\/100000051","name":"National Human Genome Research Institute","doi-asserted-by":"publisher"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Virology"],"published-print":{"date-parts":[[2021,6]]},"DOI":"10.1016\/j.virol.2021.02.013","type":"journal-article","created":{"date-parts":[[2021,3,18]],"date-time":"2021-03-18T05:07:36Z","timestamp":1616044056000},"page":"145-151","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":29,"title":["Conflicting and ambiguous names of overlapping ORFs in the SARS-CoV-2 genome: A homology-based resolution"],"prefix":"10.1016","volume":"558","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3197-5367","authenticated-orcid":false,"given":"Irwin","family":"Jungreis","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6287-1598","authenticated-orcid":false,"given":"Chase W.","family":"Nelson","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9008-0897","authenticated-orcid":false,"given":"Zachary","family":"Ardern","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3843-2357","authenticated-orcid":false,"given":"Yaara","family":"Finkel","sequence":"additional","affiliation":[]},{"given":"Nevan J.","family":"Krogan","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4431-1380","authenticated-orcid":false,"given":"Kei","family":"Sato","sequence":"additional","affiliation":[]},{"given":"John","family":"Ziebuhr","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3583-5932","authenticated-orcid":false,"given":"Noam","family":"Stern-Ginossar","sequence":"additional","affiliation":[]},{"given":"Angelo","family":"Pavesi","sequence":"additional","affiliation":[]},{"given":"Andrew E.","family":"Firth","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4967-7341","authenticated-orcid":false,"given":"Alexander E.","family":"Gorbalenya","sequence":"additional","affiliation":[]},{"given":"Manolis","family":"Kellis","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.virol.2021.02.013_bib1","doi-asserted-by":"crossref","first-page":"e79129","DOI":"10.1371\/journal.pone.0079129","article-title":"Study of the HIV-2 Env cytoplasmic tail variability and its impact on Tat, Rev and Nef","volume":"8","author":"Bakouche","year":"2013","journal-title":"PloS One"},{"key":"10.1016\/j.virol.2021.02.013_bib2","doi-asserted-by":"crossref","unstructured":"Banerjee, A.K., Blanco, M.R., Bruce, E.A., Honson, D.D., Chen, L.M., Chow, A., Bhat, P., Ollikainen, N., Quinodoz, S.A., Loney, C., Thai, J., Miller, Z.D., Lin, A.E., Schmidt, M.M., Stewart, D.G., Goldfarb, D., De Lorenzo, G., Rihn, S.J., Voorhees, R.M., Botten, J.W., Majumdar, D., Guttman, M., 2020. SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses. Cell.. https:\/\/doi.org\/10.1016\/j.cell.2020.10.004.","DOI":"10.1016\/j.cell.2020.10.004"},{"key":"10.1016\/j.virol.2021.02.013_bib3","doi-asserted-by":"crossref","first-page":"469","DOI":"10.1038\/s41586-020-2332-7","article-title":"Proteomics of SARS-CoV-2-infected host cells reveals therapy targets","volume":"583","author":"Bojkova","year":"2020","journal-title":"Nature"},{"key":"10.1016\/j.virol.2021.02.013_bib4","doi-asserted-by":"crossref","unstructured":"Cagliani, R., Forni, D., Clerici, M., Sironi, M., 2020. Coding potential and sequence conservation of SARS-CoV-2 and related animal viruses. Infection, Genetics and Evolution. https:\/\/doi.org\/10.1016\/j.meegid.2020.104353.","DOI":"10.1016\/j.meegid.2020.104353"},{"key":"10.1016\/j.virol.2021.02.013_bib5","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.placenta.2020.05.012","article-title":"Factors preventing materno-fetal transmission of SARS-CoV-2","volume":"97","author":"Celik","year":"2020","journal-title":"Placenta"},{"key":"10.1016\/j.virol.2021.02.013_bib6","doi-asserted-by":"crossref","article-title":"Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan","author":"Chan","year":"2020","journal-title":"Emerg. Microb. Infect.","DOI":"10.1080\/22221751.2020.1719902"},{"key":"10.1016\/j.virol.2021.02.013_bib7","doi-asserted-by":"crossref","first-page":"1432","DOI":"10.1038\/modpathol.3800439","article-title":"Coronaviral hypothetical and structural proteins were found in the intestinal surface enterocytes and pneumocytes of severe acute respiratory syndrome (SARS)","volume":"18","author":"Chan","year":"2005","journal-title":"Mod. Pathol."},{"key":"10.1016\/j.virol.2021.02.013_bib8","doi-asserted-by":"crossref","article-title":"Origin and evolution of pathogenic coronaviruses","author":"Cui","year":"2019","journal-title":"Nat. Rev. Microbiol.","DOI":"10.1038\/s41579-018-0118-9"},{"issue":"68","key":"10.1016\/j.virol.2021.02.013_bib9","article-title":"Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein","volume":"12","author":"Davidson","year":"2020","journal-title":"Genome Med."},{"key":"10.1016\/j.virol.2021.02.013_bib10","doi-asserted-by":"crossref","unstructured":"de Groot, R.J., Baker, S.C., Baric, R., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Perlman, S., Poon, L., Rottier, P.J.M., Talbot, P.J., Others, 2012. Family Coronaviridae, p 806\u2013828. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. Academic Press, San Diego, CA.","DOI":"10.1016\/B978-0-12-384684-6.00068-9"},{"key":"10.1016\/j.virol.2021.02.013_bib11","doi-asserted-by":"crossref","first-page":"E8895","DOI":"10.1073\/pnas.1706696114","article-title":"Expanded subgenomic mRNA transcriptome and coding capacity of a nidovirus","volume":"114","author":"Di","year":"2017","journal-title":"Proc. Natl. Acad. Sci. U. S. A"},{"key":"10.1016\/j.virol.2021.02.013_bib12","article-title":"The coding capacity of SARS-CoV-2","author":"Finkel","year":"2020","journal-title":"Nature"},{"key":"10.1016\/j.virol.2021.02.013_bib13","doi-asserted-by":"crossref","unstructured":"Firth, A.E., 2020. A putative new SARS-CoV protein, 3c, encoded in an ORF overlapping ORF3a. Journal of General Virology. https:\/\/doi.org\/10.1099\/jgv.0.001469.","DOI":"10.1101\/2020.05.12.088088"},{"key":"10.1016\/j.virol.2021.02.013_bib14","doi-asserted-by":"crossref","first-page":"1385","DOI":"10.1099\/vir.0.042499-0","article-title":"Non-canonical translation in RNA viruses","volume":"93","author":"Firth","year":"2012","journal-title":"J. Gen. Virol."},{"key":"10.1016\/j.virol.2021.02.013_bib15","doi-asserted-by":"crossref","DOI":"10.3390\/v8070184","article-title":"Regulation of stress responses and translational control by coronavirus","volume":"8","author":"Fung","year":"2016","journal-title":"Viruses"},{"key":"10.1016\/j.virol.2021.02.013_bib16","doi-asserted-by":"crossref","first-page":"405","DOI":"10.2217\/fvl-2018-0008","article-title":"Post-translational modifications of coronavirus proteins: roles and function","volume":"13","author":"Fung","year":"2018","journal-title":"Future Virol."},{"key":"10.1016\/j.virol.2021.02.013_bib17","doi-asserted-by":"crossref","unstructured":"Garofalo, M., Staniszewska, M., Salmaso, S., Caliceti, P., Pancer, K.W., Wieczorek, M., Kuryk, L., 2020. Prospects of Replication-Deficient Adenovirus Based Vaccine Development against SARS-CoV-2. Vaccines (Basel) 8. https:\/\/doi.org\/10.3390\/vaccines8020293.","DOI":"10.3390\/vaccines8020293"},{"key":"10.1016\/j.virol.2021.02.013_bib18","doi-asserted-by":"crossref","unstructured":"Gorbalenya, A.E., Baker, S.C., Baric, R.S., de Groot, R.J., Drosten, C., Gulyaeva, A.A., Haagmans, B.L., Lauber, C., Leontovich, A.M., Neuman, B.W., Penzar, D., Perlman, S., Poon, L.L.M., Samborskiy, D.V., Sidorov, I.A., Sola, I., Ziebuhr, J., 2020. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology. https:\/\/doi.org\/10.1038\/s41564-020-0695-z.","DOI":"10.1038\/s41564-020-0695-z"},{"key":"10.1016\/j.virol.2021.02.013_bib19","doi-asserted-by":"crossref","article-title":"A SARS-CoV-2 protein interaction map reveals targets for drug repurposing","author":"Gordon","year":"2020","journal-title":"Nature","DOI":"10.1038\/s41586-020-2286-9"},{"key":"10.1016\/j.virol.2021.02.013_bib20","doi-asserted-by":"crossref","first-page":"1293","DOI":"10.1038\/s41590-020-0773-7","article-title":"ORF8 and ORF3b antibodies are accurate serological markers of early and late SARS-CoV-2 infection","volume":"21","author":"Hachim","year":"2020","journal-title":"Nat. Immunol."},{"key":"10.1016\/j.virol.2021.02.013_bib21","article-title":"Imperfect innate immune antagonism renders SARS-CoV-2 vulnerable towards IFN-\u03b3 and -\u03bb","author":"Hayn","year":"2020","journal-title":"Cold Spring Harb. Lab."},{"key":"10.1016\/j.virol.2021.02.013_bib22","article-title":"The COVID-19 pandemic: a comprehensive review of Taxonomy, genetics, epidemiology, diagnosis, treatment, and control","volume":"9","author":"Helmy","year":"2020","journal-title":"J. Clin. Med. Res."},{"key":"10.1016\/j.virol.2021.02.013_bib23","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1016\/j.febslet.2004.09.076","article-title":"Evolutional insights on uncharacterized SARS coronavirus genes","volume":"577","author":"Inberg","year":"2004","journal-title":"FEBS Lett."},{"key":"10.1016\/j.virol.2021.02.013_bib24","doi-asserted-by":"crossref","first-page":"e1005473","DOI":"10.1371\/journal.ppat.1005473","article-title":"High-resolution analysis of coronavirus gene expression by RNA sequencing and ribosome profiling","volume":"12","author":"Irigoyen","year":"2016","journal-title":"PLoS Pathog."},{"key":"10.1016\/j.virol.2021.02.013_bib26","doi-asserted-by":"crossref","unstructured":"Kim, D.-K., Knapp, J.J., Kuang, D., Cassonnet, P., Samavarchi-Tehrani, P., Abdouni, H., Rayhan, A., Sheykhkarimli, D., Coyaud, E., van der Werf, S., Others, 2020a. A Flexible Genome-Scale Resource of SARS-CoV-2 Coding Sequence Clones.","DOI":"10.20944\/preprints202004.0009.v1"},{"key":"10.1016\/j.virol.2021.02.013_bib25","doi-asserted-by":"crossref","article-title":"SARS-CoV-2 Gene Content and COVID-19 Mutation Impact by Comparing 44 Sarbecovirus Genomes","author":"Jungreis","year":"2021","journal-title":"Nat. Commun","DOI":"10.1038\/s41467-021-22905-7"},{"key":"10.1016\/j.virol.2021.02.013_bib27","doi-asserted-by":"crossref","first-page":"914","DOI":"10.1016\/j.cell.2020.04.011","article-title":"The architecture of SARS-CoV-2 transcriptome","volume":"181","author":"Kim","year":"2020","journal-title":"Cell"},{"key":"10.1016\/j.virol.2021.02.013_bib28","doi-asserted-by":"crossref","unstructured":"Konno, Y., Kimura, I., Uriu, K., Fukushi, M., Irie, T., 2020a. SARS-CoV-2 ORF3b Is a Potent Interferon Antagonist Whose Activity Is Further Increased by a Naturally Occurring Elongation Variant. bioRxiv.","DOI":"10.1101\/2020.05.11.088179"},{"key":"10.1016\/j.virol.2021.02.013_bib29","article-title":"SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is increased by a naturally occurring elongation variant","volume":"108185","author":"Konno","year":"2020","journal-title":"Cell Rep."},{"key":"10.1016\/j.virol.2021.02.013_bib30","doi-asserted-by":"crossref","article-title":"Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and Nucleocapsid proteins function as interferon antagonists","author":"Kopecky-Bromberg","year":"2007","journal-title":"J. Virol.","DOI":"10.1128\/JVI.01782-06"},{"key":"10.1016\/j.virol.2021.02.013_bib31","first-page":"1","article-title":"Loss of orf3b in the circulating SARS-CoV-2 strains","author":"Lam","year":"2020","journal-title":"Emerg. Microb. Infect."},{"key":"10.1016\/j.virol.2021.02.013_bib32","doi-asserted-by":"crossref","unstructured":"Laurent, E.M.N., Sofianatos, Y., Komarova, A., Gimeno, J.P., 2020. Global BioID-Based SARS-CoV-2 Proteins Proximal Interactome Unveils Novel Ties between Viral Polypeptides and Host Factors Involved in Multiple COVID19 \u2026. bioRxiv.","DOI":"10.1101\/2020.08.28.272955"},{"issue":"1193","key":"10.1016\/j.virol.2021.02.013_bib33","article-title":"Antibody dynamics to SARS-CoV-2 in asymptomatic COVID-19 infections","volume":"26","author":"Lei","year":"2020","journal-title":"Allergy"},{"key":"10.1016\/j.virol.2021.02.013_bib34","doi-asserted-by":"crossref","article-title":"Accessory proteins of SARS-CoV and other coronaviruses","author":"Liu","year":"2014","journal-title":"Antivir. Res.","DOI":"10.1016\/j.antiviral.2014.06.013"},{"key":"10.1016\/j.virol.2021.02.013_bib35","doi-asserted-by":"crossref","first-page":"6143","DOI":"10.1128\/jvi.66.10.6143-6154.1992","article-title":"Internal entry of ribosomes on a tricistronic mRNA encoded by infectious bronchitis virus","volume":"66","author":"Liu","year":"1992","journal-title":"J. Virol."},{"key":"10.1016\/j.virol.2021.02.013_bib36","doi-asserted-by":"crossref","DOI":"10.1128\/JVI.01410-20","article-title":"Type I interferon susceptibility distinguishes SARS-CoV-2 from SARS-CoV","volume":"94","author":"Lokugamage","year":"2020","journal-title":"J. Virol."},{"key":"10.1016\/j.virol.2021.02.013_bib37","doi-asserted-by":"crossref","first-page":"565","DOI":"10.1016\/S0140-6736(20)30251-8","article-title":"Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding","volume":"395","author":"Lu","year":"2020","journal-title":"Lancet"},{"key":"10.1016\/j.virol.2021.02.013_bib38","doi-asserted-by":"crossref","first-page":"1399","DOI":"10.1126\/science.1085953","article-title":"The Genome sequence of the SARS-associated coronavirus","volume":"300","author":"Marra","year":"2003","journal-title":"Science"},{"issue":"131","key":"10.1016\/j.virol.2021.02.013_bib39","article-title":"Characterization of accessory genes in coronavirus genomes","volume":"17","author":"Michel","year":"2020","journal-title":"Virol. J."},{"key":"10.1016\/j.virol.2021.02.013_bib40","doi-asserted-by":"crossref","unstructured":"Nabeel-Shah, S., Lee, H., Ahmed, N., Marcon, E., 2020. SARS-CoV-2 Nucleocapsid Protein Attenuates Stress Granule Formation and Alters Gene Expression via Direct Interaction with Host mRNAs. bioRxiv.","DOI":"10.1101\/2020.10.23.342113"},{"key":"10.1016\/j.virol.2021.02.013_bib41","unstructured":"Nelson, C.W., Ardern, Z., Goldberg, T.L., Meng, C., Kuo, C.H., 2020a. A Previously Uncharacterized Gene in SARS-CoV-2 Illuminates the Functional Dynamics and Evolutionary Origins of the COVID-19 Pandemic. bioRxiv."},{"key":"10.1016\/j.virol.2021.02.013_bib42","doi-asserted-by":"crossref","DOI":"10.7554\/eLife.59633","article-title":"Dynamically evolving novel overlapping gene as a factor in the SARS-CoV-2 pandemic","volume":"9","author":"Nelson","year":"2020","journal-title":"Elife"},{"key":"10.1016\/j.virol.2021.02.013_bib43","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1006\/viro.2000.0218","article-title":"Downstream ribosomal entry for translation of coronavirus TGEV gene 3b","volume":"269","author":"O'Connor","year":"2000","journal-title":"Virology"},{"key":"10.1016\/j.virol.2021.02.013_bib44","article-title":"Computational search of hybrid human\/SARS-CoV-2 dsRNA reveals unique viral sequences that diverge from other coronavirus strains","author":"Pasquier","year":"2020","journal-title":"Cold Spring Harb. Lab."},{"key":"10.1016\/j.virol.2021.02.013_bib45","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.virol.2020.03.007","article-title":"New insights into the evolutionary features of viral overlapping genes by discriminant analysis","volume":"546","author":"Pavesi","year":"2020","journal-title":"Virology"},{"key":"10.1016\/j.virol.2021.02.013_bib46","doi-asserted-by":"crossref","article-title":"Exploring the SARS-CoV-2 virus-host-drug interactome for drug repurposing","author":"Sadegh","year":"2020","journal-title":"Nat. Commun.","DOI":"10.1038\/s41467-020-17189-2"},{"key":"10.1016\/j.virol.2021.02.013_bib47","author":"Samavarchi-Tehrani"},{"key":"10.1016\/j.virol.2021.02.013_bib48","doi-asserted-by":"crossref","first-page":"e1008737","DOI":"10.1371\/journal.ppat.1008737","article-title":"Interplay between SARS-CoV-2 and the type I interferon response","volume":"16","author":"Sa Ribero","year":"2020","journal-title":"PLoS Pathog."},{"key":"10.1016\/j.virol.2021.02.013_bib49","doi-asserted-by":"crossref","first-page":"2572","DOI":"10.1093\/molbev\/msy155","article-title":"A simple method to detect candidate overlapping genes in viruses using single genome sequences","volume":"35","author":"Schlub","year":"2018","journal-title":"Mol. Biol. Evol."},{"key":"10.1016\/j.virol.2021.02.013_bib50","first-page":"865","article-title":"Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage","author":"Snijder","year":"2003","journal-title":"J. Mol. Biol."},{"key":"10.1016\/j.virol.2021.02.013_bib51","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1146\/annurev-virology-100114-055218","article-title":"Continuous and discontinuous RNA synthesis in coronaviruses","volume":"2","author":"Sola","year":"2015","journal-title":"Annu. Rev. Virol."},{"key":"10.1016\/j.virol.2021.02.013_bib52","doi-asserted-by":"crossref","unstructured":"St-Germain, J.R., Astori, A., Samavarchi-Tehrani, P., Abdouni, H., Macwan, V., Kim, D.-K., Knapp, J.J., Roth, F.P., Gingras, A.-C., Raught, B., 2020. A SARS-CoV-2 BioID-Based Virus-Host Membrane Protein Interactome and Virus Peptide Compendium: New Proteomics Resources for COVID-19 Research. Cold Spring Harbor Laboratory. https:\/\/doi.org\/10.1101\/2020.08.28.269175.","DOI":"10.1101\/2020.08.28.269175"},{"key":"10.1016\/j.virol.2021.02.013_bib53","doi-asserted-by":"crossref","unstructured":"Sun, W., 2020. The Discovery of Gene Mutations Making SARS-CoV-2 Well Adapted for Humans: Host-Genome Similarity Analysis of 2594 Genomes from China, the USA and Europe. Cold Spring Harbor Laboratory. https:\/\/doi.org\/10.1101\/2020.09.03.280727.","DOI":"10.1101\/2020.09.03.280727"},{"issue":"580641","key":"10.1016\/j.virol.2021.02.013_bib54","article-title":"Covid-19: perspectives on innate immune evasion. Front","volume":"11","author":"Taefehshokr","year":"2020","journal-title":"Immunol."},{"key":"10.1016\/j.virol.2021.02.013_bib55","article-title":"UniProt: a worldwide hub of protein knowledge","year":"2019","journal-title":"Nucleic Acids Res."},{"issue":"Pt 11","key":"10.1016\/j.virol.2021.02.013_bib56","doi-asserted-by":"crossref","first-page":"3041","DOI":"10.1099\/0022-1317-75-11-3041","article-title":"Internal ribosome entry in the coding region of murine hepatitis virus mRNA 5","volume":"75","author":"Thiel","year":"1994","journal-title":"J. Gen. Virol."},{"key":"10.1016\/j.virol.2021.02.013_bib57","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1038\/s41586-020-2008-3","article-title":"A new coronavirus associated with human respiratory disease in China","volume":"579","author":"Wu","year":"2020","journal-title":"Nature"},{"issue":"1576","key":"10.1016\/j.virol.2021.02.013_bib58","article-title":"Severe acute respiratory syndrome coronavirus 2: from gene structure to pathogenic mechanisms and potential therapy","volume":"11","author":"Wu","year":"2020","journal-title":"Front. Microbiol."},{"issue":"108234","key":"10.1016\/j.virol.2021.02.013_bib59","article-title":"Evasion of type I interferon by SARS-CoV-2","volume":"33","author":"Xia","year":"2020","journal-title":"Cell Rep."},{"issue":"117","key":"10.1016\/j.virol.2021.02.013_bib60","article-title":"SARS-CoV-2: characteristics and current advances in research","volume":"17","author":"Yang","year":"2020","journal-title":"Virol. J."},{"key":"10.1016\/j.virol.2021.02.013_bib61","doi-asserted-by":"crossref","article-title":"COVID-19: what has been learned and to be learned about the novel coronavirus disease","author":"Yi","year":"2020","journal-title":"Int. J. Biol. Sci.","DOI":"10.7150\/ijbs.45134"},{"key":"10.1016\/j.virol.2021.02.013_bib62","doi-asserted-by":"crossref","first-page":"198","DOI":"10.1007\/s10930-020-09901-4","article-title":"The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19","volume":"39","author":"Yoshimoto","year":"2020","journal-title":"Protein J."},{"key":"10.1016\/j.virol.2021.02.013_bib63","doi-asserted-by":"crossref","first-page":"1418","DOI":"10.1080\/22221751.2020.1780953","article-title":"SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists","volume":"9","author":"Yuen","year":"2020","journal-title":"Emerg. Microb. Infect."},{"key":"10.1016\/j.virol.2021.02.013_bib64","article-title":"A systemic and molecular study of subcellular localization of SARS-CoV-2 proteins","author":"Zhang","year":"2020","journal-title":"Cold Spring Harb. Lab."},{"key":"10.1016\/j.virol.2021.02.013_bib65","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1099\/vir.0.033589-0","article-title":"Bat severe acute respiratory syndrome-like coronavirus ORF3b homologues display different interferon antagonist activities","volume":"93","author":"Zhou","year":"2012","journal-title":"J. Gen. Virol."},{"key":"10.1016\/j.virol.2021.02.013_bib66","doi-asserted-by":"crossref","first-page":"270","DOI":"10.1038\/s41586-020-2012-7","article-title":"A pneumonia outbreak associated with a new coronavirus of probable bat origin","volume":"579","author":"Zhou","year":"2020","journal-title":"Nature"},{"key":"10.1016\/j.virol.2021.02.013_bib67","doi-asserted-by":"crossref","first-page":"727","DOI":"10.1056\/NEJMoa2001017","article-title":"A novel coronavirus from patients with pneumonia in China, 2019","volume":"382","author":"Zhu","year":"2020","journal-title":"N. Engl. J. Med."},{"key":"10.1016\/j.virol.2021.02.013_bib68","article-title":"Lost in deletion: the enigmatic ORF8 protein of SARS-CoV-2","author":"Zinzula","year":"2020","journal-title":"Biochem. Biophys. Res. Commun."}],"container-title":["Virology"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0042682221000532?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0042682221000532?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,6,25]],"date-time":"2022-06-25T04:02:53Z","timestamp":1656129773000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0042682221000532"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6]]},"references-count":68,"alternative-id":["S0042682221000532"],"URL":"http:\/\/dx.doi.org\/10.1016\/j.virol.2021.02.013","relation":{},"ISSN":["0042-6822"],"issn-type":[{"value":"0042-6822","type":"print"}],"subject":["Virology"],"published":{"date-parts":[[2021,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Conflicting and ambiguous names of overlapping ORFs in the SARS-CoV-2 genome: A homology-based resolution","name":"articletitle","label":"Article Title"},{"value":"Virology","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.virol.2021.02.013","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 The Author(s). Published by Elsevier Inc.","name":"copyright","label":"Copyright"}]}}

DOI: 10.1016/j.virol.2021.02.013

Abstract

At least six small alternate-frame open reading frames (ORFs) overlapping well-characterized SARS-CoV-2 genes have been hypothesized to encode accessory proteins. Researchers have used different names for the same ORF or the same name for different ORFs, resulting in erroneous homological and functional inferences. We propose standard names for these ORFs and their shorter isoforms, developed in consultation with the Coronaviridae Study Group of the ICTV. We recommend calling the 39 codon Spike-overlapping ORF ORF2b; the 41, 57, and 22 codon ORF3a-overlapping ORFs ORF3c, ORF3d, and ORF3b; the 33 codon ORF3d isoform ORF3d-2; and the 97 and 73 codon Nucleocapsid-overlapping ORFs ORF9b and ORF9c. Finally, we document conflicting usage of the name ORF3b in 32 studies, and consequent erroneous inferences, stressing the importance of reserving identical names for homologs. We recommend that authors referring to these ORFs provide lengths and coordinates to minimize ambiguity due to prior usage of alternative names.

Keywords

accessory protein; alternate reading frame; nomenclature; open reading frame; ORF3b; ORF3d; ORF9a; ORF9b; overlapping ORF; SARS-CoV-2

Subject

LIFE SCIENCES, Biochemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.