Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Application of Machine Learning for the Automation of the Quality Control of Noise Filtering Processes in Seismic Data Imaging

Version 1 : Received: 19 November 2020 / Approved: 20 November 2020 / Online: 20 November 2020 (12:12:03 CET)

How to cite: mejri, M.; Bekara, M. Application of Machine Learning for the Automation of the Quality Control of Noise Filtering Processes in Seismic Data Imaging. Preprints 2020, 2020110541 (doi: 10.20944/preprints202011.0541.v1). mejri, M.; Bekara, M. Application of Machine Learning for the Automation of the Quality Control of Noise Filtering Processes in Seismic Data Imaging. Preprints 2020, 2020110541 (doi: 10.20944/preprints202011.0541.v1).

Abstract

Seismic imaging is the main technology used for subsurface hydrocarbon prospection. It~provides an image of the subsurface using the same principles as ultrasound medical imaging. As for any data acquired through hydrophones (pressure sensors) and/or geophones (velocity/acceleration sensors), the raw seismic data are heavily contaminated with noise and unwanted reflections that need to be removed before further processing. Therefore, the noise attenuation is done at an early stage and often while acquiring the data. Quality control (QC) is mandatory to give confidence in the denoising process and to ensure that a costly data re-acquisition is not needed. QC is done manually by humans and comprises a major portion of the cost of a typical seismic processing project. It is therefore advantageous to automate this process to improve cost and efficiency. Here, we propose a supervised learning approach to build an automatic QC system. The~QC system is an attribute-based classifier that is trained to classify three types of filtering (mild = under filtering, noise remaining in the data; optimal = good filtering; harsh = over filtering, the signal is distorted). The attributes are computed from the data and represent geophysical and statistical measures of the quality of the filtering. The system is tested on a full-scale survey (9000 km2) to QC the results of the swell noise attenuation process in marine seismic data.

Subject Areas

QC denoise automation; feature transformation techniques; classification methods

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.