Preprint
Article

MPC-Based Motion Cueing Algorithm for a 6 DOF Driving Simulator with Actuator Constraints

This version is not peer-reviewed.

Submitted:

18 November 2020

Posted:

19 November 2020

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Driving simulators are widely used for understanding human-machine interaction, driver behavior and in driver training. The effectiveness of simulators in these process depends largely on their ability to generate realistic motion cues. Though the conventional filter-based motion cueing strategies have provided reasonable results, these methods suffer from poor workspace management. To address this issue, linear MPC-based strategies have been applied in the past. However, since the kinematics of the motion platform itself is non-linear and the required motion varies with the driving conditions, this approach tends to produce sub-optimal results. This paper presents a nonlinear MPC-based algorithm which incorporates the nonlinear kinematics of the Stewart platform within the MPC algorithm in order to increase the cueing fidelity and utilize maximum workspace. Further, adaptive weights-based tuning is used to smoothen the movement of the platform towards its physical limits. Full-track simulations were carried out and performance indicators were defined to objectively compare the response of the proposed algorithm with classical washout filter and linear MPC-based algorithms. The results indicate a better reference tracking with lower root mean square error and higher shape correlation for the proposed algorithm. Lastly, the effect of the adaptive weights-based tuning was also observed in the form of smoother actuator movements and better workspace utilization.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

241

Views

278

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated