Preprint
Article

This version is not peer-reviewed.

Emergence of Planck’s Constant from Iterated Maps

Submitted:

16 November 2020

Posted:

17 November 2020

You are already at the latest version

Abstract
Iterations of continuous maps are the simplest models of generic dynamical systems. In particular, circle maps display several key properties of complex dynamics, such as phase-locking and the quasi-periodicity route to chaos. Our work points out that Planck’s constant may be derived from the scaling behavior of circle maps in the asymptotic limit.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated