Preprint
Article

Soliton Crystal Microcombs for Versatile, High-Speed, Scalable Optical Neural Networks

This version is not peer-reviewed.

Submitted:

05 November 2020

Posted:

06 November 2020

You are already at the latest version

Abstract
Optical artificial neural networks (ONNs) have significant potential for ultra-high computing speed and energy efficiency. We report a new approach to ONNs based on integrated Kerr micro-combs that is programmable, highly scalable and capable of reaching ultra-high speeds, demonstrating the building block of the ONN — a single neuron perceptron — by mapping synapses onto 49 wavelengths to achieve a single-unit throughput of 11.9 Giga-OPS at 8 bits per OP, or 95.2 Gbps. We test the perceptron on handwritten-digit recognition and cancer-cell detection — achieving over 90% and 85% accuracy, respectively. By scaling the perceptron to a deep learning network using off-the-shelf telecom technology we can achieve high throughput operation for matrix multiplication for real-time massive data processing.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

385

Views

264

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated