Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Composite Ferroelectric Membranes based on Vinylidene Fluoride-Tetrafluoroethylene Copolymer and Polyvinylpyrrolidone for Wound Healing: A Pilot Study

Version 1 : Received: 5 November 2020 / Approved: 5 November 2020 / Online: 5 November 2020 (15:02:01 CET)

A peer-reviewed article of this Preprint also exists.

Tverdokhlebova, T.S.; Antipina, L.S.; Kudryavtseva, V.L.; Stankevich, K.S.; Kolesnik, I.M.; Senokosova, E.A.; Velikanova, E.A.; Antonova, L.V.; Vasilchenko, D.V.; Dambaev, G.T.; Plotnikov, E.V.; Bouznik, V.M.; Bolbasov, E.N. Composite Ferroelectric Membranes Based on Vinylidene Fluoride-Tetrafluoroethylene Copolymer and Polyvinylpyrrolidone for Wound Healing. Membranes 2021, 11, 21. Tverdokhlebova, T.S.; Antipina, L.S.; Kudryavtseva, V.L.; Stankevich, K.S.; Kolesnik, I.M.; Senokosova, E.A.; Velikanova, E.A.; Antonova, L.V.; Vasilchenko, D.V.; Dambaev, G.T.; Plotnikov, E.V.; Bouznik, V.M.; Bolbasov, E.N. Composite Ferroelectric Membranes Based on Vinylidene Fluoride-Tetrafluoroethylene Copolymer and Polyvinylpyrrolidone for Wound Healing. Membranes 2021, 11, 21.

Abstract

Herein, we report results of the study of the composite ferroelectric scaffolds based on vinylidene fluoride-tetrafluoroethylene copolymer (VDF-TeFE) and polyvinylpyrrolidone (PVP) produced by electrospinning and their application as a wound-healing material. The physicochemical properties of ferroelectric composite polymer scaffolds depending on the content of PVP (in the range from 0 to 50 wt %) including morphology, composition and crystalline structure were studied. The cytotoxicity of materials and the proliferative activity of cells during their cultivation on the surface of formed scaffolds are reported. It has been found that the optimal PVP content in the VDF-TeFE composite scaffolds is 15 wt%. On a model of a full-thickness contaminated wound in vivo, it was shown that piezoelectric scaffolds based on VDF-TeFE copolymer containing 15 wt% PVP provide better wound healing results in comparison with standard gauze dressings impregnated with a solution of an antibacterial agent.

Keywords

Ferroelectrics; Composite; Membranes; Wound healing

Subject

Chemistry and Materials Science, Biomaterials

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.