Preprint
Article

This version is not peer-reviewed.

Hypoxia-Induced ROS Promotes Mitochondrial Fission and Cisplatin Chemosensitivity via HIF-1α/Mff Regulation

Submitted:

04 November 2020

Posted:

05 November 2020

You are already at the latest version

Abstract
Chemotherapy treatment based on Cisplatin (CDDP) is established as the drug of choice for head and neck squamous cell carcinoma (HNSCC). Malignant tumors respond to microenvironment alteration through a dynamic balance of mitochondrial fission and fusion. HNSCC is known to have hypoxic conditions, yet the effects and underlying mechanisms of hypoxia on chemosensitivity and mitochondrial dynamics remain unclear. We found that hypoxia promoted mitochondrial fission and CDDP sensitivity in HNSCC cells. Importantly, Mff was shown to be correlated with chemosensitivity in clinical samples of HNSCC that underwent a hypoxic condition. Hypoxia-inducible factor 1 α-subunit (HIF-1α) dramatically increased Mff transcriptional expression and directly bound to Mff. Hypoxia enhanced the release of reactive oxygen species (ROS) and upregulated the expression of Mff via HIF-1α in HNSCC cells. ROS depletion in HNSCC cells attenuated HIF-1α, Mff expression, and mitochondrial fission. Moreover, a knockdown of Mff suppressed hypoxia-induced mitochondrial fission and decreased CDDP chemosensitivity in vivo and in vitro. Our findings revealed that the hypoxia-induced release of ROS promoted mitochondrial fission and CDDP chemosensitivity via the regulation of HIF-1α/Mff in HNSCC cells, indicating that Mff may serve as a new biomarker to predict neoadjuvant chemosensitivity in HNSCC patients
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated