Preprint
Review

This version is not peer-reviewed.

Thermoelectric Materials—Strategies for Improving Device Performance and Its Medical Applications

Submitted:

24 June 2019

Posted:

09 July 2019

You are already at the latest version

Abstract
Thermoelectrics, in particular solid-state conversion of heat to electricity and vice versa, is expected to be a key energy harvesting and temperature management solution in coming years. There has been a resurgence in the search for new materials for advanced thermoelectric energy conversion applications and to enhance the properties of existing materials. In this paper, we review recent efforts on improving figure-of-merit (ZT) through alloying and nano structuring. As heatsink characteristics dictate the performance of thermoelectric modules, various types of heatsink designs has been investigated. Several reported strategies for improving ZT are critically assessed. A notable increase in figure-of-merit of thermoelectric materials (TE) has opened up new areas of applications especially in the medical field. Peltier cooling devices are widely employed for patient core temperature control, skin cooling, medical device and laboratory equipment cooling. Application of these devices in the medical field both in temperature control and power generation has been studied in detail. It is envisioned that this study will provide profound knowledge on the thermoelectric based materials and its role in medical applications.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated