Preprint Review Version 1 This version is not peer-reviewed

LC-NMR for Natural Products Analysis: A Journey from an Academic Curiosity to a Robust Analytical Tool

Version 1 : Received: 8 April 2019 / Approved: 30 May 2019 / Online: 14 June 2019 (00:00:00 CEST)

How to cite: Gebretsadik, T.; Linert, W.; Thomas, M.; Berhanu, T.; Frew, R. LC-NMR for Natural Products Analysis: A Journey from an Academic Curiosity to a Robust Analytical Tool. Preprints 2020, 2020110084 (doi: 10.3390/sci1010031). Gebretsadik, T.; Linert, W.; Thomas, M.; Berhanu, T.; Frew, R. LC-NMR for Natural Products Analysis: A Journey from an Academic Curiosity to a Robust Analytical Tool. Preprints 2020, 2020110084 (doi: 10.3390/sci1010031).

Abstract

LC–NMR combines the advantage of the outstanding separation power of liquid chromatography (LC) and the superior structural elucidating capability of nuclear magnetic resonance (NMR). NMR has proved that it is a standout detector for LC by providing maximum structural information about plant originated extracts particularly in its isolating ability of isomeric (same molecular formula) and/or isobaric (same molecular weight) compounds as compared to other detectors. The present review provides an overview of the LC–NMR developmental trends and its application in natural products analysis. The different LC–NMR operational modes are described, as well as how technical improvements assist in establishing this powerful technique as an important analytical tool in the analysis of complex plant-derived compounds. On-flow, stop-flow and loop-storage modes, as well as the new offline mode LC–SPE–NMR and capLC-NMR configurations that avoid the ingestion of expensive deuterated solvents throughout the experiment are mentioned. Utilization of cryogenic probe and microprobe technologies which are the other important promising approaches for guaranteeing the sensitivity issues are also described. Concluding remarks and future outlooks are also discussed.

Subject Areas

separation technique; spectroscopic technique; hyphenated techniques; LC-NMR; natural products

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.