Preprint Article Version 1 This version is not peer-reviewed

Relevancy of Nizatidine Release from Floating Tablets with Viscosity of Various Cellulose Ethers

Version 1 : Received: 4 March 2019 / Approved: 1 April 2019 / Online: 9 April 2019 (00:00:00 CEST)

How to cite: Shahzad, Y.; Ibrar, N.; Hussain, T.; Yousaf, A.M.; Khan, I.U.; Rizvi, S.A.A. Relevancy of Nizatidine Release from Floating Tablets with Viscosity of Various Cellulose Ethers. Preprints 2020, 2020110082 (doi: 10.3390/sci1010022). Shahzad, Y.; Ibrar, N.; Hussain, T.; Yousaf, A.M.; Khan, I.U.; Rizvi, S.A.A. Relevancy of Nizatidine Release from Floating Tablets with Viscosity of Various Cellulose Ethers. Preprints 2020, 2020110082 (doi: 10.3390/sci1010022).

Abstract

Nizatidine is a gastroprotective drug with a short biological half-life and narrow absorption window. This study aimed at developing floating tablets of nizatidine using various HPMC viscosity grades, namely K4M, E4M, K15 and K200M. Directly compressed tablets revealed an excellent uniformity in hardness, thickness and weight and nizatidine was evenly distributed within the matrix floating tablets. Buoyancy study revealed floating lag time as low as 18–38 s, and tablets remain buoyant for upto 24 h. However, the later depended upon viscosity grade of HPMC and that the higher the viscosity, the less was the total floating time. In vitro dissolution indicated viscosity dependent nizatidine release from the floating tablets. HPMC K4M and E4M based floating tablets released almost 100% drug in 12 h, whilst higher viscosity polymers such as K15 and K200M only released 81.88% and 75.81% drug, respectively. The drug release followed non-Fickian diffusion from tablets formulated with K4M, K15 and K200M, whilst super case II transport was observed with E4M based tablets. More interestingly, K4M and E4M polymers have similar viscosity yet exhibited different drug release mechanism. This was attributed to the difference in degree of substitution of methoxyl- and hydroxypropoxyl- groups on polymer backbone.

Subject Areas

buoyancy; dissolution; floating tablets; HPMC; nizatidine; substitution level; viscosity grades

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.