A novel hybrid phosphite [(C4N2H14)Co(H2PO3)4·2H2O] was synthesized with 1,4- diaminobutane (dabn) as a structure-directing agent using slow evaporation method. Single crystal X-ray diffraction analysis showed that it crystallizes in the triclinic system (S.G: P-1, #2) with the following unit cell parameters (Å, °) a = 5.4814 (3), b = 7.5515 (4), c = 10.8548 (6), α = 88.001 (4), β = 88.707 (5), γ = 85.126 (5). The crystal structure was built up from corner-sharing [CoO6]-octahedrons, forming chains parallel to [001], which are interconnected by H2PO3 pseudo-pyramid units. The diprotonated 1,4-diaminobutane molecules, residing between the parallel chains, interacted with the inorganic moiety via hydrogen bonds leading thus to the formation of the 3D crystal structure. The Fourier transform infrared result exhibited characteristic bands corresponding to the phosphite group and the organic molecule. The thermal decomposition of the compound consists mainly of the loss of the organic moiety and the water molecules. The biological tests exhibited significant activity against Candida albicans and Escherichia coli strains in all used concentrations, while less activity was pronounced when tested against Staphylococcus epidermidis and Saccharomyces cerevisiae, while there was no activity against the nematode model Steinernema feltiae.