Preprint
Article

Measuring Lift-off Distance and Electromagnetic Property of Metal Using Dual-Frequency Linearity Feature

This version is not peer-reviewed.

Submitted:

05 October 2020

Posted:

07 October 2020

You are already at the latest version

Abstract
Lift-offs of the sensor could significantly affect the measurement signal and reconstruction of material properties when using the electromagnetic (inductive) eddy current sensor. Previously, various methods (including novel sensor designs, and features like zero-crossing frequency, lift-off point of intercept) have been used for eliminating the measurement error caused by the lift-off distance effect of the sensor. However, these approaches can only be applied for a small range of lift-off variations. In this paper, a linear relationship has been found between the sensor lift-off and ratio of dual-frequency eddy current signals, particularly under the high working dual frequencies. Based on this linear relationship, the lift-off variation can be reconstructed firstly with a small error of 2.5 % when its actual value is up to 10 mm (10.1 % for 20 mm). The reconstructed lift-off is used to further get the property of the material under a low single frequency. Experiments on different ferrous metals have been carried out for the testing of the reconstruction scheme. Since the inductance is more sensitive to the material property (and less sensitive to the lift-off) under low frequencies, the reconstruction error of the material property is much smaller than that of the lift-off, with 1.4 % under 12 mm (and 4.5 % under 20 mm).
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

338

Views

183

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated