Preprint
Brief Report

This version is not peer-reviewed.

Multiple Linear Regression, its Statistical Analysis and Application in Energy Efficiency

Submitted:

04 October 2020

Posted:

05 October 2020

You are already at the latest version

Abstract
In this project, we use a statistical multiple regression to study the impact of eight various predictors (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, glazing area distribution) to estimate the cooling load energy efficiency of residential buildings. We try to analyze and visualize the effect of each predictor with each of the response variable using different classical statistical analysis tools used in describing linear models, in such a way so that we can find out the most strongly related predictor variables. Before starting all of this, we use the idea of model selection by stepwise regression technique and compare the AIC of these models and identified a better model between all of them. Then, we compare a classical linear regression approach by simulations on 768 diverse residential buildings show that we can predict CL with low mean absolute error. By using ANOVA we determine variation in the different residuals. Also, we use non constant variance test to verify it. Furthermore, we check leverage and influence points as well as outliers as well as determined cook distance for influential points. By taking box cox transformation and weights, we also introduce WLS technique to fit the model for better results and did all type of important analysis to understand the energy efficiency. Finally, we show 5-fold cross validation to verify our model.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated