Preprint
Article

This version is not peer-reviewed.

Asymptotic Justification of Models of Plates Containing Inside Hard Thin Inclusions

A peer-reviewed article of this preprint also exists.

Submitted:

01 October 2020

Posted:

02 October 2020

You are already at the latest version

Abstract
An equilibrium problem of the Kirchhoff-Love plate containing a nonhomogeneous inclusion is considered. It is assumed that elastic properties of the inclusion depend on a small parameter characterizing width of the inclusion $\varepsilon$ as $\varepsilon^N$ with $N<1$. The passage to the limit as the parameter $\varepsilon$ tends to zero is justified, and an asymptotic model of a plate containing a thin inhomogeneous hard inclusion is constructed. It is shown that there exists two types of thin inclusions: rigid inclusion ($N<-1$) and elastic inclusion ($N=-1$). The inhomogeneity disappears in the case of $N\in (-1,1)$.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated